File: doc_model_with_nan_policy.py

package info (click to toggle)
lmfit-py 1.0.1-6
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,544 kB
  • sloc: python: 11,025; makefile: 114; sh: 43
file content (33 lines) | stat: -rw-r--r-- 788 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# <examples/doc_model_with_nan_policy.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.models import GaussianModel

data = np.loadtxt('model1d_gauss.dat')
x = data[:, 0]
y = data[:, 1]

y[44] = np.nan
y[65] = np.nan

# nan_policy = 'raise'
# nan_policy = 'propagate'
nan_policy = 'omit'

gmodel = GaussianModel()
result = gmodel.fit(y, x=x, amplitude=5, center=6, sigma=1,
                    nan_policy=nan_policy)

print(result.fit_report())

# make sure nans are removed for plotting:
x_ = x[np.where(np.isfinite(y))]
y_ = y[np.where(np.isfinite(y))]

plt.plot(x_, y_, 'bo')
plt.plot(x_, result.init_fit, 'k--', label='initial fit')
plt.plot(x_, result.best_fit, 'r-', label='best fit')
plt.legend(loc='best')
plt.show()
# <end examples/doc_model_with_nan_policy.py>