File: Models

package info (click to toggle)
lmfit-py 1.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,332 kB
  • sloc: python: 13,071; makefile: 130; sh: 30
file content (215 lines) | stat: -rw-r--r-- 6,401 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Bennett5.dat:Model:         Miscellaneous Class
Bennett5.dat-               3 Parameters (b1 to b3)
Bennett5.dat-
Bennett5.dat-               y = b1 * (b2+x)**(-1/b3)  +  e
Bennett5.dat-
Bennett5.dat-
Bennett5.dat-
--
BoxBOD.dat:Model:         Exponential Class
BoxBOD.dat-               2 Parameters (b1 and b2)
BoxBOD.dat-
BoxBOD.dat-               y = b1*(1-exp[-b2*x])  +  e
BoxBOD.dat-
BoxBOD.dat-
BoxBOD.dat-
--
Chwirut1.dat:Model:         Exponential Class
Chwirut1.dat-               3 Parameters (b1 to b3)
Chwirut1.dat-
Chwirut1.dat-               y = exp[-b1*x]/(b2+b3*x)  +  e
Chwirut1.dat-
Chwirut1.dat-
Chwirut1.dat-
--
Chwirut2.dat:Model:         Exponential Class
Chwirut2.dat-               3 Parameters (b1 to b3)
Chwirut2.dat-
Chwirut2.dat-               y = exp(-b1*x)/(b2+b3*x)  +  e
Chwirut2.dat-
Chwirut2.dat-
Chwirut2.dat-
--
DanWood.dat:Model:         Miscellaneous Class
DanWood.dat-               2 Parameters (b1 and b2)
DanWood.dat-
DanWood.dat-               y  = b1*x**b2  +  e
DanWood.dat-
DanWood.dat-
DanWood.dat-
--
ENSO.dat:Model:         Miscellaneous Class
ENSO.dat-               9 Parameters (b1 to b9)
ENSO.dat-
ENSO.dat-               y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 )
ENSO.dat-                      + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )
ENSO.dat-                      + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 )  + e
ENSO.dat-
--
Eckerle4.dat:Model:         Exponential Class
Eckerle4.dat-               3 Parameters (b1 to b3)
Eckerle4.dat-
Eckerle4.dat-               y = (b1/b2) * exp[-0.5*((x-b3)/b2)**2]  +  e
Eckerle4.dat-
Eckerle4.dat-
Eckerle4.dat-
--
Gauss1.dat:Model:         Exponential Class
Gauss1.dat-               8 Parameters (b1 to b8)
Gauss1.dat-
Gauss1.dat-               y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
Gauss1.dat-                                   + b6*exp( -(x-b7)**2 / b8**2 ) + e
Gauss1.dat-
Gauss1.dat-
--
Gauss2.dat:Model:         Exponential Class
Gauss2.dat-               8 Parameters (b1 to b8)
Gauss2.dat-
Gauss2.dat-               y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
Gauss2.dat-                                   + b6*exp( -(x-b7)**2 / b8**2 ) + e
Gauss2.dat-
Gauss2.dat-
--
Gauss3.dat:Model:         Exponential Class
Gauss3.dat-               8 Parameters (b1 to b8)
Gauss3.dat-
Gauss3.dat-               y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
Gauss3.dat-                                   + b6*exp( -(x-b7)**2 / b8**2 ) + e
Gauss3.dat-
Gauss3.dat-
--
Hahn1.dat:Model:         Rational Class (cubic/cubic)
Hahn1.dat-               7 Parameters (b1 to b7)
Hahn1.dat-
Hahn1.dat-               y = (b1+b2*x+b3*x**2+b4*x**3) /
Hahn1.dat-                   (1+b5*x+b6*x**2+b7*x**3)  +  e
Hahn1.dat-
Hahn1.dat-
--
Kirby2.dat:Model:         Rational Class (quadratic/quadratic)
Kirby2.dat-               5 Parameters (b1 to b5)
Kirby2.dat-
Kirby2.dat-               y = (b1 + b2*x + b3*x**2) /
Kirby2.dat-                   (1 + b4*x + b5*x**2)  +  e
Kirby2.dat-
Kirby2.dat-
--
Lanczos1.dat:Model:         Exponential Class
Lanczos1.dat-               6 Parameters (b1 to b6)
Lanczos1.dat-
Lanczos1.dat-               y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
Lanczos1.dat-
Lanczos1.dat-
Lanczos1.dat-
--
Lanczos2.dat:Model:         Exponential Class
Lanczos2.dat-               6 Parameters (b1 to b6)
Lanczos2.dat-
Lanczos2.dat-               y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
Lanczos2.dat-
Lanczos2.dat-
Lanczos2.dat-
--
Lanczos3.dat:Model:         Exponential Class
Lanczos3.dat-               6 Parameters (b1 to b6)
Lanczos3.dat-
Lanczos3.dat-               y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x)  +  e
Lanczos3.dat-
Lanczos3.dat-
Lanczos3.dat-
--
MGH09.dat:Model:         Rational Class (linear/quadratic)
MGH09.dat-               4 Parameters (b1 to b4)
MGH09.dat-
MGH09.dat-               y = b1*(x**2+x*b2) / (x**2+x*b3+b4)  +  e
MGH09.dat-
MGH09.dat-
MGH09.dat-
--
MGH10.dat:Model:         Exponential Class
MGH10.dat-               3 Parameters (b1 to b3)
MGH10.dat-
MGH10.dat-               y = b1 * exp[b2/(x+b3)]  +  e
MGH10.dat-
MGH10.dat-
MGH10.dat-
--
MGH17.dat:Model:         Exponential Class
MGH17.dat-               5 Parameters (b1 to b5)
MGH17.dat-
MGH17.dat-               y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5]  +  e
MGH17.dat-
MGH17.dat-
MGH17.dat-
--
Misra1a.dat:Model:         Exponential Class
Misra1a.dat-               2 Parameters (b1 and b2)
Misra1a.dat-
Misra1a.dat-               y = b1*(1-exp[-b2*x])  +  e
Misra1a.dat-
Misra1a.dat-
Misra1a.dat-
--
Misra1b.dat:Model:         Miscellaneous Class
Misra1b.dat-               2 Parameters (b1 and b2)
Misra1b.dat-
Misra1b.dat-               y = b1 * (1-(1+b2*x/2)**(-2))  +  e
Misra1b.dat-
Misra1b.dat-
Misra1b.dat-
--
Misra1c.dat:Model:         Miscellaneous Class
Misra1c.dat-               2 Parameters (b1 and b2)
Misra1c.dat-
Misra1c.dat-               y = b1 * (1-(1+2*b2*x)**(-.5))  +  e
Misra1c.dat-
Misra1c.dat-
Misra1c.dat-
--
Misra1d.dat:Model:         Miscellaneous Class
Misra1d.dat-               2 Parameters (b1 and b2)
Misra1d.dat-
Misra1d.dat-               y = b1*b2*x*((1+b2*x)**(-1))  +  e
Misra1d.dat-
Misra1d.dat-
Misra1d.dat-
--
Nelson.dat:Model:         Exponential Class
Nelson.dat-               3 Parameters (b1 to b3)
Nelson.dat-
Nelson.dat-               log[y] = b1 - b2*x1 * exp[-b3*x2]  +  e
Nelson.dat-
Nelson.dat-
Nelson.dat-
--
Rat42.dat:Model:         Exponential Class
Rat42.dat-               3 Parameters (b1 to b3)
Rat42.dat-
Rat42.dat-               y = b1 / (1+exp[b2-b3*x])  +  e
Rat42.dat-
Rat42.dat-
Rat42.dat-
--
Rat43.dat:Model:         Exponential Class
Rat43.dat-               4 Parameters (b1 to b4)
Rat43.dat-
Rat43.dat-               y = b1 / ((1+exp[b2-b3*x])**(1/b4))  +  e
Rat43.dat-
Rat43.dat-
Rat43.dat-
--
Roszman1.dat:Model:         Miscellaneous Class
Roszman1.dat-               4 Parameters (b1 to b4)
Roszman1.dat-
Roszman1.dat-               pi = 3.141592653589793238462643383279E0
Roszman1.dat-               y =  b1 - b2*x - arctan[b3/(x-b4)]/pi  +  e
Roszman1.dat-
Roszman1.dat-
--
Thurber.dat:Model:         Rational Class (cubic/cubic)
Thurber.dat-               7 Parameters (b1 to b7)
Thurber.dat-
Thurber.dat-               y = (b1 + b2*x + b3*x**2 + b4*x**3) /
Thurber.dat-                   (1 + b5*x + b6*x**2 + b7*x**3)  +  e
Thurber.dat-
Thurber.dat-