1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
# <examples/doc_builtinmodels_peakmodels.py>
import matplotlib.pyplot as plt
from numpy import loadtxt
from lmfit.models import GaussianModel, LorentzianModel, VoigtModel
data = loadtxt('test_peak.dat')
x = data[:, 0]
y = data[:, 1]
# Gaussian model
mod = GaussianModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(correl_mode='table'))
plt.plot(x, y)
plt.plot(x, out.best_fit, '-', label='Gaussian Model')
plt.legend()
plt.show()
# Lorentzian model
mod = LorentzianModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(correl_mode='table'))
plt.figure()
plt.plot(x, y, '-')
plt.plot(x, out.best_fit, '-', label='Lorentzian Model')
plt.legend()
plt.show()
# Voigt model
mod = VoigtModel()
pars = mod.guess(y, x=x)
out = mod.fit(y, pars, x=x)
print(out.fit_report(correl_mode='table'))
fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))
axes[0].plot(x, y, '-')
axes[0].plot(x, out.best_fit, '-', label='Voigt Model\ngamma constrained')
axes[0].legend()
# allow the gamma parameter to vary in the fit
pars['gamma'].vary = True
out_gamma = mod.fit(y, pars, x=x)
print(out.fit_report(correl_mode='table'))
axes[1].plot(x, y, '-')
axes[1].plot(x, out_gamma.best_fit, '-', label='Voigt Model\ngamma unconstrained')
axes[1].legend()
plt.show()
# <end examples/doc_builtinmodels_peakmodels.py>
|