File: doc_builtinmodels_stepmodel.py

package info (click to toggle)
lmfit-py 1.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,332 kB
  • sloc: python: 13,071; makefile: 130; sh: 30
file content (30 lines) | stat: -rw-r--r-- 784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# <examples/doc_builtinmodels_stepmodel.py>
import matplotlib.pyplot as plt
import numpy as np

from lmfit.models import LinearModel, StepModel

x = np.linspace(0, 10, 201)
y = np.ones_like(x)
y[:48] = 0.0
y[48:77] = np.arange(77-48)/(77.0-48)
np.random.seed(0)
y = 110.2 * (y + 9e-3*np.random.randn(x.size)) + 12.0 + 2.22*x

step_mod = StepModel(form='erf', prefix='step_')
line_mod = LinearModel(prefix='line_')

pars = line_mod.make_params(intercept=y.min(), slope=0)
pars += step_mod.guess(y, x=x, center=2.5)

mod = step_mod + line_mod
out = mod.fit(y, pars, x=x)

print(out.fit_report())

plt.plot(x, y)
plt.plot(x, out.init_fit, '--', label='initial fit')
plt.plot(x, out.best_fit, '-', label='best fit')
plt.legend()
plt.show()
# <end examples/doc_builtinmodels_stepmodel.py>