File: doc_confidence_basic.py

package info (click to toggle)
lmfit-py 1.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,332 kB
  • sloc: python: 13,071; makefile: 130; sh: 30
file content (24 lines) | stat: -rw-r--r-- 481 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# <examples/doc_confidence_basic.py>
import numpy as np

import lmfit

x = np.linspace(0.3, 10, 100)
np.random.seed(0)
y = 1/(0.1*x) + 2 + 0.1*np.random.randn(x.size)

pars = lmfit.create_params(a=0.1, b=1)


def residual(p):
    return 1/(p['a']*x) + p['b'] - y


mini = lmfit.Minimizer(residual, pars)
result = mini.minimize()

print(lmfit.fit_report(result.params))

ci = lmfit.conf_interval(mini, result)
lmfit.printfuncs.report_ci(ci)
# <end examples/doc_confidence_basic.py>