File: example_complex_resonator_model.py

package info (click to toggle)
lmfit-py 1.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,332 kB
  • sloc: python: 13,071; makefile: 130; sh: 30
file content (125 lines) | stat: -rw-r--r-- 4,731 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
Complex Resonator Model
=======================

This notebook shows how to fit the parameters of a complex resonator,
using `lmfit.Model` and defining a custom `Model` class.

Following Khalil et al. (https://arxiv.org/abs/1108.3117), we can model the
forward transmission of a microwave resonator with total quality factor
:math:`Q`, coupling quality factor :math:`Q_e`, and resonant frequency
:math:`f_0` using:

.. math::

    S_{21}(f) = 1 - \\frac{Q Q_e^{-1}}{1+2jQ(f-f_0)/f_0}

:math:`S_{21}` is thus a complex function of a real frequency.

By allowing :math:`Q_e` to be complex, this model can take into account
mismatches in the input and output transmission impedances.

"""
import matplotlib.pyplot as plt
import numpy as np

import lmfit

###############################################################################
# Since ``scipy.optimize`` and ``lmfit`` require real parameters, we represent
# :math:`Q_e` as ``Q_e_real + 1j*Q_e_imag``.


def linear_resonator(f, f_0, Q, Q_e_real, Q_e_imag):
    Q_e = Q_e_real + 1j*Q_e_imag
    return 1 - (Q * Q_e**-1 / (1 + 2j * Q * (f - f_0) / f_0))


###############################################################################
# The standard practice of defining a ``lmfit`` model is as follows:
class ResonatorModel(lmfit.model.Model):
    __doc__ = "resonator model" + lmfit.models.COMMON_INIT_DOC

    def __init__(self, *args, **kwargs):
        # pass in the defining equation so the user doesn't have to later
        super().__init__(linear_resonator, *args, **kwargs)

        self.set_param_hint('Q', min=0)  # enforce Q is positive

    def guess(self, data, f=None, **kwargs):
        verbose = kwargs.pop('verbose', None)
        if f is None:
            return
        argmin_s21 = np.abs(data).argmin()
        fmin = f.min()
        fmax = f.max()
        f_0_guess = f[argmin_s21]  # guess that the resonance is the lowest point
        Q_min = 0.1 * (f_0_guess/(fmax-fmin))  # assume the user isn't trying to fit just a small part of a resonance curve
        delta_f = np.diff(f)  # assume f is sorted
        min_delta_f = delta_f[delta_f > 0].min()
        Q_max = f_0_guess/min_delta_f  # assume data actually samples the resonance reasonably
        Q_guess = np.sqrt(Q_min*Q_max)  # geometric mean, why not?
        Q_e_real_guess = Q_guess/(1-np.abs(data[argmin_s21]))
        if verbose:
            print(f"fmin={fmin}, fmax={fmax}, f_0_guess={f_0_guess}")
            print(f"Qmin={Q_min}, Q_max={Q_max}, Q_guess={Q_guess}, Q_e_real_guess={Q_e_real_guess}")
        params = self.make_params(Q=Q_guess, Q_e_real=Q_e_real_guess, Q_e_imag=0, f_0=f_0_guess)
        params[f'{self.prefix}Q'].set(min=Q_min, max=Q_max)
        params[f'{self.prefix}f_0'].set(min=fmin, max=fmax)
        return lmfit.models.update_param_vals(params, self.prefix, **kwargs)


###############################################################################
# Now let's use the model to generate some fake data:
resonator = ResonatorModel()
true_params = resonator.make_params(f_0=100, Q=10000, Q_e_real=9000, Q_e_imag=-9000)

f = np.linspace(99.95, 100.05, 100)
true_s21 = resonator.eval(params=true_params, f=f)
noise_scale = 0.02
np.random.seed(123)
measured_s21 = true_s21 + noise_scale*(np.random.randn(100) + 1j*np.random.randn(100))

plt.plot(f, 20*np.log10(np.abs(measured_s21)))
plt.ylabel('|S21| (dB)')
plt.xlabel('MHz')
plt.title('simulated measurement')

###############################################################################
# Try out the ``guess`` method we added:
guess = resonator.guess(measured_s21, f=f, verbose=True)

##############################################################################
# And now fit the data using the ``guess``-ed values as a starting point:
result = resonator.fit(measured_s21, params=guess, f=f, verbose=True)

print(result.fit_report() + '\n')
result.params.pretty_print()

###############################################################################
# Now we'll make some plots of the data and fit. Define a convenience function
# for plotting complex quantities:


def plot_ri(data, *args, **kwargs):
    plt.plot(data.real, data.imag, *args, **kwargs)


fit_s21 = resonator.eval(params=result.params, f=f)
guess_s21 = resonator.eval(params=guess, f=f)

plt.figure()
plot_ri(measured_s21, '.')
plot_ri(fit_s21, '.-', label='best fit')
plot_ri(guess_s21, '--', label='initial fit')
plt.legend()
plt.xlabel('Re(S21)')
plt.ylabel('Im(S21)')

plt.figure()
plt.plot(f, 20*np.log10(np.abs(measured_s21)), '.')
plt.plot(f, 20*np.log10(np.abs(fit_s21)), '.-', label='best fit')
plt.plot(f, 20*np.log10(np.abs(guess_s21)), '--', label='initial fit')
plt.legend()
plt.ylabel('|S21| (dB)')
plt.xlabel('MHz')