1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
"""
Emcee and the Model Interface
=============================
"""
import corner
import matplotlib.pyplot as plt
import numpy as np
import lmfit
###############################################################################
# Set up a double-exponential function and create a Model:
def double_exp(x, a1, t1, a2, t2):
return a1*np.exp(-x/t1) + a2*np.exp(-(x-0.1) / t2)
model = lmfit.Model(double_exp)
###############################################################################
# Generate some fake data from the model with added noise:
truths = (3.0, 2.0, -5.0, 10.0)
x = np.linspace(1, 10, 250)
np.random.seed(0)
y = double_exp(x, *truths)+0.1*np.random.randn(x.size)
###############################################################################
# Create model parameters and give them initial values:
p = model.make_params(a1=4, t1=3, a2=4, t2=3)
###############################################################################
# Fit the model using a traditional minimizer, and show the output:
result = model.fit(data=y, params=p, x=x, method='Nelder', nan_policy='omit')
lmfit.report_fit(result)
result.plot()
###############################################################################
# Calculate parameter covariance using ``emcee``:
#
# - start the walkers out at the best-fit values
# - set ``is_weighted`` to ``False`` to estimate the noise weights
# - set some sensible priors on the uncertainty to keep the MCMC in check
emcee_kws = dict(steps=5000, burn=500, thin=20, is_weighted=False,
progress=False)
emcee_params = result.params.copy()
emcee_params.add('__lnsigma', value=np.log(0.1), min=np.log(0.001), max=np.log(2.0))
###############################################################################
# run the MCMC algorithm and show the results:
result_emcee = model.fit(data=y, x=x, params=emcee_params, method='emcee',
nan_policy='omit', fit_kws=emcee_kws)
###############################################################################
lmfit.report_fit(result_emcee)
###############################################################################
result_emcee.plot_fit()
plt.plot(x, model.eval(params=result.params, x=x), '--', label='Nelder')
plt.legend()
###############################################################################
# Check the acceptance fraction to see whether ``emcee`` performed well:
plt.plot(result_emcee.acceptance_fraction, 'o')
plt.xlabel('walker')
plt.ylabel('acceptance fraction')
###############################################################################
# Try to compute the autocorrelation time:
if hasattr(result_emcee, "acor"):
print("Autocorrelation time for the parameters:")
print("----------------------------------------")
for i, p in enumerate(result.params):
print(f'{p} = {result_emcee.acor[i]:.3f}')
###############################################################################
# Plot the parameter covariances returned by ``emcee`` using ``corner``:
emcee_corner = corner.corner(result_emcee.flatchain, labels=result_emcee.var_names,
truths=list(result_emcee.params.valuesdict().values()))
###############################################################################
print("\nmedian of posterior probability distribution")
print('--------------------------------------------')
lmfit.report_fit(result_emcee.params)
###############################################################################
# Find the maximum likelihood solution:
highest_prob = np.argmax(result_emcee.lnprob)
hp_loc = np.unravel_index(highest_prob, result_emcee.lnprob.shape)
mle_soln = result_emcee.chain[hp_loc]
print("\nMaximum Likelihood Estimation (MLE):")
print('----------------------------------')
for ix, param in enumerate(emcee_params):
print(f"{param}: {mle_soln[ix]:.3f}")
quantiles = np.percentile(result_emcee.flatchain['t1'], [2.28, 15.9, 50, 84.2, 97.7])
print(f"\n\n1 sigma spread = {0.5 * (quantiles[3] - quantiles[1]):.3f}")
print(f"2 sigma spread = {0.5 * (quantiles[4] - quantiles[0]):.3f}")
|