1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
"""
Benchmarks of methods with and without computing the Jacobian analytically
==========================================================================
Providing a function that calculates the Jacobian matrix analytically can
reduce the time spent finding a solution. The results from benchmarks comparing
two methods (``leastsq`` and ``least_squares``) with and without a function to
calculate the Jacobian matrix analytically are presented below.
First we define the model function, the residual function, and the appropriate
Jacobian functions:
"""
from timeit import timeit
from types import SimpleNamespace
import matplotlib.pyplot as plt
import numpy as np
from lmfit import Parameters, minimize
NUM_JACOBIAN_CALLS = 0
def func(var, x):
return var[0] * np.exp(-var[1]*x) + var[2]
def residual(pars, x, data):
a, b, c = pars['a'], pars['b'], pars['c']
model = func((a, b, c), x)
return model - data
def dfunc(pars, x, data):
global NUM_JACOBIAN_CALLS
NUM_JACOBIAN_CALLS += 1
a, b = pars['a'], pars['b']
v = np.exp(-b*x)
return np.array([v, -a*x*v, np.ones(len(x))])
def jacfunc(pars, x, data):
global NUM_JACOBIAN_CALLS
NUM_JACOBIAN_CALLS += 1
a, b = pars['a'], pars['b']
v = np.exp(-b*x)
jac = np.ones((len(x), 3), dtype=np.float64)
jac[:, 0] = v
jac[:, 1] = -a * x * v
return jac
a, b, c = 2.5, 1.3, 0.8
x = np.linspace(0, 4, 50)
y = func([a, b, c], x)
data = y + 0.15*np.random.RandomState(seed=2021).normal(size=x.size)
###############################################################################
# Then we define the different cases to benchmark (i.e., different methods with
# and without a function to calculate the Jacobian analytically) and the number
# of repetitions per case:
cases = (
dict(
method='leastsq',
),
dict(
method='leastsq',
Dfun=dfunc,
col_deriv=1,
),
dict(
method='least_squares',
),
dict(
method='least_squares',
jac=jacfunc,
),
)
num_repeats = 100
results = []
for kwargs in cases:
params = Parameters()
params.add('a', value=10)
params.add('b', value=10)
params.add('c', value=10)
wrapper = lambda: minimize(
residual,
params,
args=(x,),
kws={'data': data},
**kwargs,
)
time = timeit(wrapper, number=num_repeats) / num_repeats
NUM_JACOBIAN_CALLS = 0
fit = wrapper()
results.append(SimpleNamespace(
time=time,
num_jacobian_calls=NUM_JACOBIAN_CALLS,
fit=fit,
kwargs=kwargs,
))
###############################################################################
# Finally, we present the results:
labels = []
for result in results:
label = result.kwargs['method']
if result.num_jacobian_calls > 0:
label += ' with Jac.'
labels.append(label)
label_width = max(map(len, labels))
lines = [
'| '
+ ' | '.join([
'Method'.ljust(label_width),
'Avg. time (ms)',
'# func. (+ Jac.) calls',
'Chi-squared',
'a'.ljust(5),
'b'.ljust(5),
'c'.ljust(6),
])
+ '|'
]
print(f'The "true" parameters are: a = {a:.3f}, b = {b:.3f}, c = {c:.3f}\n')
fig, ax = plt.subplots()
ax.plot(x, data, marker='.', linestyle='none', label='data')
for (result, label) in zip(results, labels):
linestyle = '-'
if result.num_jacobian_calls > 0:
linestyle = '--'
a = result.fit.params['a'].value
b = result.fit.params['b'].value
c = result.fit.params['c'].value
y = func([a, b, c], x)
ax.plot(x, y, label=label, alpha=0.5, linestyle=linestyle)
columns = [
label.ljust(label_width),
f'{result.time * 1000:.2f}'.ljust(14),
(
f'{result.fit.nfev}'
+ (
f' (+{result.num_jacobian_calls})'
if result.num_jacobian_calls > 0 else
''
)
).ljust(22),
f'{result.fit.chisqr:.3f}'.ljust(11),
f'{a:.3f}'.ljust(5, '0'),
f'{b:.3f}'.ljust(5, '0'),
f'{c:.3f}'.ljust(5, '0'),
]
lines.append('| ' + ' | '.join(columns) + ' |')
lines.insert(1, '|-' + '-|-'.join('-' * len(col) for col in columns) + '-|')
print('\n'.join(lines))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.legend()
|