1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
"""Contains functions to calculate confidence intervals."""
from warnings import warn
import numpy as np
from scipy.optimize import root_scalar
from scipy.special import erf
from scipy.stats import f
from .minimizer import MinimizerException
CONF_ERR_GEN = 'Cannot determine Confidence Intervals'
CONF_ERR_STDERR = f'{CONF_ERR_GEN} without sensible uncertainty estimates'
CONF_ERR_NVARS = f'{CONF_ERR_GEN} with < 2 variables'
def f_compare(best_fit, new_fit):
"""Return the probability calculated using the F-test.
The null model (i.e., best-fit solution) is compared to an alternate
model where one or more parameters are fixed.
Parameters
----------
best_fit : MinimizerResult
The result from the best-fit.
new_fit : MinimizerResult
The result from fit with the fixed parameter(s).
Returns
-------
float
Value of the calculated probability.
"""
nfree = best_fit.nfree
nfix = best_fit.nvarys - new_fit.nvarys
dchi = new_fit.chisqr / best_fit.chisqr - 1.0
return f.cdf(dchi * nfree / nfix, nfix, nfree)
def copy_vals(params):
"""Save values/stderrs of parameters in a temporary dictionary."""
tmp_params = {}
for para_key in params:
tmp_params[para_key] = (params[para_key].value,
params[para_key].stderr)
return tmp_params
def restore_vals(tmp_params, params):
"""Restore values/stderrs of parameters from a temporary dictionary."""
for para_key in params:
params[para_key].value, params[para_key].stderr = tmp_params[para_key]
def conf_interval(minimizer, result, p_names=None, sigmas=None, trace=False,
maxiter=200, verbose=False, prob_func=None,
min_rel_change=1e-5):
"""Calculate the confidence interval (CI) for parameters.
The parameter for which the CI is calculated will be varied, while the
remaining parameters are re-optimized to minimize the chi-square. The
resulting chi-square is used to calculate the probability with a given
statistic (e.g., F-test). This function uses a 1d-rootfinder from SciPy
to find the values resulting in the searched confidence region.
Parameters
----------
minimizer : Minimizer
The minimizer to use, holding objective function.
result : MinimizerResult
The result of running minimize().
p_names : list, optional
Names of the parameters for which the CI is calculated. If None
(default), the CI is calculated for every parameter.
sigmas : list, optional
The sigma-levels to find (default is [1, 2, 3]). See Notes below.
trace : bool, optional
Defaults to False; if True, each result of a probability
calculation is saved along with the parameter. This can be used to
plot so-called "profile traces".
maxiter : int, optional
Maximum of iteration to find an upper limit (default is 200).
verbose : bool, optional
Print extra debugging information (default is False).
prob_func : None or callable, optional
Function to calculate the probability from the optimized chi-square.
Default is None and uses the built-in function `f_compare`
(i.e., F-test).
min_rel_change : float, optional
Minimum relative change in probability (default is 1e-5).
Returns
-------
output : dict
A dictionary containing a list of ``(sigma, vals)``-tuples for
each parameter.
trace_dict : dict, optional
Only if trace is True. Is a dictionary, the key is the parameter
which was fixed. The values are again a dict with the names as
keys, but with an additional key 'prob'. Each contains an array
of the corresponding values.
See Also
--------
conf_interval2d
Notes
-----
The values for `sigma` are taken as the number of standard deviations
for a normal distribution and converted to probabilities. That is, the
default ``sigma=[1, 2, 3]`` will use probabilities of 0.6827, 0.9545,
and 0.9973. If any of the sigma values is less than 1, that will be
interpreted as a probability. That is, a value of 1 and 0.6827 will
give the same results, within precision.
Examples
--------
>>> from lmfit.printfuncs import *
>>> mini = minimize(some_func, params)
>>> mini.leastsq()
True
>>> report_errors(params)
... #report
>>> ci = conf_interval(mini)
>>> report_ci(ci)
... #report
Now with quantiles for the sigmas and using the trace.
>>> ci, trace = conf_interval(mini, sigmas=[0.5, 1, 2, 3], trace=True)
>>> fixed = trace['para1']['para1']
>>> free = trace['para1']['not_para1']
>>> prob = trace['para1']['prob']
This makes it possible to plot the dependence between free and fixed
parameters.
"""
if sigmas is None:
sigmas = [1, 2, 3]
ci = ConfidenceInterval(minimizer, result, p_names, prob_func, sigmas,
trace, verbose, maxiter, min_rel_change)
output = ci.calc_all_ci()
if trace:
return output, ci.trace_dict
return output
def map_trace_to_names(trace, params):
"""Map trace to parameter names."""
out = {}
allnames = list(params.keys()) + ['prob']
for name in trace.keys():
tmp_dict = {}
tmp = np.array(trace[name])
for para_name, values in zip(allnames, tmp.T):
tmp_dict[para_name] = values
out[name] = tmp_dict
return out
class ConfidenceInterval:
"""Class used to calculate the confidence interval."""
def __init__(self, minimizer, result, p_names=None, prob_func=None,
sigmas=None, trace=False, verbose=False, maxiter=50,
min_rel_change=1e-5):
"""Initialize the ConfidenceInterval class.
Parameters
----------
minimizer : Minimizer
The minimizer to use, holding objective function.
result : MinimizerResult
The result of running minimize().
p_names : list, optional
Names of the parameters for which the CI is calculated. If None
(default), the CI is calculated for every parameter.
prob_func : None or callable, optional
Function to calculate the probability from the optimized chi-square.
Default is None and uses the built-in function `f_compare`
(i.e., F-test).
sigmas : list, optional
The sigma-levels to find (default is [1, 2, 3]).
trace : bool, optional
Defaults to False; if True, each result of a probability
calculation is saved along with the parameter. This can be used to
plot so-called "profile traces".
verbose : bool, optional
Print extra debugging information (default is False).
maxiter : int, optional
Maximum of iteration to find an upper limit (default is 50).
min_rel_change : float, optional
Minimum relative change in probability (default is 1e-5).
Raises
------
MinimizerException
If there are less than two variables or if the stderrs are not
sensible.
"""
self.verbose = verbose
self.minimizer = minimizer
self.result = result
self.params = result.params.copy()
self.org = copy_vals(self.params)
self.best_chi = result.chisqr
if p_names is None:
p_names = [i for i in self.params if self.params[i].vary]
self.p_names = p_names
self.fit_params = [self.params[p] for p in self.p_names]
# check that there are at least 2 true variables!
# check that all stderrs are sensible (including not None or NaN)
for par in self.fit_params:
if par.vary and (par.stderr is None or par.stderr is np.nan):
raise MinimizerException(CONF_ERR_STDERR)
nvars = len([p for p in self.params.values() if p.vary])
if nvars < 2:
raise MinimizerException(CONF_ERR_NVARS)
if prob_func is None:
self.prob_func = f_compare
else:
self.prob_func = prob_func
if trace:
self.trace_dict = {i: [] for i in self.p_names}
self.trace = trace
self.maxiter = maxiter
self.min_rel_change = min_rel_change
if sigmas is None:
sigmas = [1, 2, 3]
self.sigmas = list(sigmas)
self.sigmas.sort()
self.probs = []
for sigma in self.sigmas:
if sigma < 1:
prob = sigma
else:
prob = erf(sigma/np.sqrt(2))
self.probs.append(prob)
def calc_all_ci(self):
"""Calculate all confidence intervals."""
out = {}
for p in self.p_names:
out[p] = (self.calc_ci(p, -1)[::-1] +
[(0., self.params[p].value)] +
self.calc_ci(p, 1))
if self.trace:
self.trace_dict = map_trace_to_names(self.trace_dict, self.params)
return out
def calc_ci(self, para, direction):
"""Calculate the CI for a single parameter in a single direction.
Direction is either positive or negative 1.
"""
if isinstance(para, str):
para = self.params[para]
# function used to calculate the probability
cache = {}
def calc_prob(val, target_prob):
if val not in cache:
cache[val] = self.calc_prob(para, val, 0)
return cache[val] - target_prob
if self.trace:
x = [i.value for i in self.params.values()]
self.trace_dict[para.name].append(x + [0])
para.vary = False
limit, max_prob = self.find_limit(para, direction)
a_limit = float(para.value)
ret = []
orig_warn_settings = np.geterr()
np.seterr(all='ignore')
for prob in self.probs:
if prob > max_prob:
ret.append((prob, direction*np.inf))
continue
sol = root_scalar(calc_prob, method='toms748', bracket=sorted([limit, a_limit]), rtol=.5e-4, args=(prob,))
if sol.converged:
val = sol.root
else:
val = np.nan
break
a_limit = val
ret.append((prob, val))
para.vary = True
self.reset_vals()
np.seterr(**orig_warn_settings)
return ret
def reset_vals(self):
"""Reset parameter values to best-fit values."""
restore_vals(self.org, self.params)
def find_limit(self, para, direction):
"""Find a value for given parameter so that prob(val) > sigmas."""
if self.verbose:
print(f'Calculating CI for {para.name}')
self.reset_vals()
# determine starting step
if para.stderr > 0 and para.stderr < abs(para.value):
step = para.stderr
else:
step = max(abs(para.value) * 0.2, 0.001)
para.vary = False
start_val = para.value
old_prob = 0
limit = start_val
i = 0
bound_reached = False
max_prob = max(self.probs)
while old_prob < max_prob:
i += 1
limit += step * direction
if limit > para.max:
limit = para.max
bound_reached = True
elif limit < para.min:
limit = para.min
bound_reached = True
new_prob = self.calc_prob(para, limit)
rel_change = (new_prob - old_prob) / max(new_prob, old_prob, 1e-12)
old_prob = new_prob
if self.verbose:
print(f'P({para.name}={limit}) = {new_prob}, '
f'max. prob={max_prob}')
# check for convergence
if bound_reached and new_prob < max(self.probs):
errmsg = (f'Bound reached with prob({para.name}={limit}) '
f'= {new_prob} < max(sigmas)')
warn(errmsg)
break
if i > self.maxiter:
errmsg = (f'maxiter={self.maxiter} reached and prob('
f'{para.name}={limit}) = {new_prob} < max(sigmas)')
warn(errmsg)
break
if rel_change < self.min_rel_change:
errmsg = (f'rel_change={rel_change} < {self.min_rel_change} '
f'at iteration {i} and prob({para.name}={limit}) = '
f'{new_prob} < max(sigmas)')
warn(errmsg)
break
self.reset_vals()
return limit, new_prob
def calc_prob(self, para, val, offset=0., restore=False):
"""Calculate the probability for given value."""
if restore:
restore_vals(self.org, self.params)
para.value = val
save_para = self.params[para.name]
self.params[para.name] = para
self.minimizer.prepare_fit(self.params)
out = self.minimizer.leastsq()
prob = self.prob_func(self.result, out)
if self.trace:
x = [i.value for i in out.params.values()]
self.trace_dict[para.name].append(x + [prob])
self.params[para.name] = save_para
return prob - offset
def conf_interval2d(minimizer, result, x_name, y_name, nx=10, ny=10,
limits=None, prob_func=None, nsigma=5, chi2_out=False):
r"""Calculate confidence regions for two fixed parameters.
The method itself is explained in `conf_interval`: here we are fixing
two parameters.
Parameters
----------
minimizer : Minimizer
The minimizer to use, holding objective function.
result : MinimizerResult
The result of running minimize().
x_name : str
The name of the parameter which will be the x direction.
y_name : str
The name of the parameter which will be the y direction.
nx : int, optional
Number of points in the x direction (default is 10).
ny : int, optional
Number of points in the y direction (default is 10).
limits : tuple, optional
Should have the form ``((x_upper, x_lower), (y_upper, y_lower))``.
If not given, the default is nsigma*stderr in each direction.
prob_func : None or callable, deprecated
Starting with version 1.2, this argument is unused and has no effect.
nsigma : float or int, optional
Multiplier of stderr for limits (default is 5).
chi2_out: bool
Whether to return chi-square at each coordinate instead of probability.
Returns
-------
x : numpy.ndarray
X-coordinates (same shape as `nx`).
y : numpy.ndarray
Y-coordinates (same shape as `ny`).
grid : numpy.ndarray
2-D array (with shape ``(nx, ny)``) containing the calculated
probabilities or chi-square.
See Also
--------
conf_interval
Examples
--------
>>> mini = Minimizer(some_func, params)
>>> result = mini.leastsq()
>>> x, y, gr = conf_interval2d(mini, result, 'para1','para2')
>>> plt.contour(x,y,gr)
"""
if prob_func is not None:
msg = "'prob_func' has no effect and will be removed in version 1.4."
raise DeprecationWarning(msg)
params = result.params
best_chisqr = result.chisqr
redchi = result.redchi
org = copy_vals(result.params)
x = params[x_name]
y = params[y_name]
if limits is None:
(x_upper, x_lower) = (x.value + nsigma * x.stderr, x.value - nsigma * x.stderr)
(y_upper, y_lower) = (y.value + nsigma * y.stderr, y.value - nsigma * y.stderr)
elif len(limits) == 2:
(x_upper, x_lower) = limits[0]
(y_upper, y_lower) = limits[1]
x_points = np.linspace(x_lower, x_upper, nx)
y_points = np.linspace(y_lower, y_upper, ny)
grid = np.dstack(np.meshgrid(x_points, y_points))
x.vary, y.vary = False, False
def calc_chisqr(vals, restore=False):
"""Calculate chi-square for a set of parameter values."""
save_x = x.value
save_y = y.value
result.params[x.name].value = vals[0]
result.params[y.name].value = vals[1]
minimizer.prepare_fit(params=result.params)
out = minimizer.leastsq()
result.params[x.name].value = save_x
result.params[y.name].value = save_y
return out.chisqr
# grid of chi-square
out_mat = np.apply_along_axis(calc_chisqr, -1, grid)
# compute grid of sigma values from chi-square
if not chi2_out:
chisqr0 = out_mat.min()
chisqr0 = min(best_chisqr, chisqr0)
out_mat = np.sqrt((out_mat-chisqr0)/redchi)
x.vary, y.vary = True, True
restore_vals(org, result.params)
result.chisqr = best_chisqr
return x_points, y_points, out_mat
|