1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
import os
import numpy as np
from numpy import pi
from numpy.testing import assert_allclose, assert_almost_equal
import pytest
from lmfit import Parameters, minimize
from lmfit.lineshapes import exponential
from lmfit.models import ExponentialModel, LinearModel, VoigtModel
def check(para, real_val, sig=3):
err = abs(para.value - real_val)
assert err < sig * para.stderr
def test_bounded_parameters():
return
# create data to be fitted
np.random.seed(1)
x = np.linspace(0, 15, 301)
data = (5. * np.sin(2 * x - 0.1) * np.exp(-x*x*0.025) +
np.random.normal(size=len(x), scale=0.2))
# define objective function: returns the array to be minimized
def fcn2min(params, x, data):
""" model decaying sine wave, subtract data"""
amp = params['amp']
shift = params['shift']
omega = params['omega']
decay = params['decay']
model = amp * np.sin(x * omega + shift) * np.exp(-x*x*decay)
return model - data
# create a set of Parameters
params = Parameters()
params.add('amp', value=10, min=0, max=50)
params.add('decay', value=0.1, min=0, max=10)
params.add('shift', value=0.0, min=-pi/2., max=pi/2.)
params.add('omega', value=3.0, min=0, max=np.inf)
# do fit, here with leastsq model
result = minimize(fcn2min, params, args=(x, data),
epsfcn=1.e-14)
# assert that the real parameters are found
for para, val in zip(result.params.values(), [5, 0.025, -.1, 2]):
check(para, val)
# assert that the covariance matrix is correct [cf. lmfit v0.9.10]
cov_x = np.array([
[1.42428250e-03, 9.45395985e-06, -4.33997922e-05, 1.07362106e-05],
[9.45395985e-06, 1.84110424e-07, -2.90588963e-07, 7.19107184e-08],
[-4.33997922e-05, -2.90588963e-07, 9.53427031e-05, -2.37750362e-05],
[1.07362106e-05, 7.19107184e-08, -2.37750362e-05, 9.60952336e-06]])
assert_allclose(result.covar, cov_x, rtol=1.e-3, atol=1.e-6)
# assert that stderr and correlations are correct [cf. lmfit v0.9.10]
assert_almost_equal(result.params['amp'].stderr, 0.03773967, decimal=4)
assert_almost_equal(result.params['decay'].stderr, 4.2908e-04, decimal=4)
assert_almost_equal(result.params['shift'].stderr, 0.00976436, decimal=4)
assert_almost_equal(result.params['omega'].stderr, 0.00309992, decimal=4)
assert_almost_equal(result.params['amp'].correl['decay'],
0.5838166760743324, decimal=4)
assert_almost_equal(result.params['amp'].correl['shift'],
-0.11777303073961824, decimal=4)
assert_almost_equal(result.params['amp'].correl['omega'],
0.09177027400788784, decimal=4)
assert_almost_equal(result.params['decay'].correl['shift'],
-0.0693579417651835, decimal=4)
assert_almost_equal(result.params['decay'].correl['omega'],
0.05406342001021014, decimal=4)
assert_almost_equal(result.params['shift'].correl['omega'],
-0.7854644476455469, decimal=4)
def test_bounds_expression():
# load data to be fitted
data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..', 'examples',
'test_peak.dat'))
x = data[:, 0]
y = data[:, 1]
# define the model and initialize parameters
mod = VoigtModel()
params = mod.guess(y, x=x)
params['amplitude'].set(min=0, max=100)
params['center'].set(min=5, max=10)
# do fit, here with leastsq model
result = mod.fit(y, params, x=x, fit_kws={'epsfcn': 1.e-14})
# assert that stderr and correlations are correct [cf. lmfit v0.9.10]
assert_almost_equal(result.params['sigma'].stderr, 0.00368468, decimal=4)
assert_almost_equal(result.params['center'].stderr, 0.00505496, decimal=4)
assert_almost_equal(result.params['amplitude'].stderr, 0.13861506,
decimal=4)
assert_almost_equal(result.params['gamma'].stderr, 0.00368468, decimal=4)
assert_almost_equal(result.params['fwhm'].stderr, 0.01326862028, decimal=4)
assert_almost_equal(result.params['height'].stderr, 0.0395990, decimal=4)
assert_almost_equal(result.params['sigma'].correl['center'],
-4.6623973788006615e-05, decimal=4)
assert_almost_equal(result.params['sigma'].correl['amplitude'],
0.651304091954038, decimal=4)
assert_almost_equal(result.params['center'].correl['amplitude'],
-4.390334984618851e-05, decimal=4)
@pytest.mark.parametrize("fit_method", ['nelder', 'lbfgs'])
def test_numdifftools_no_bounds(fit_method):
pytest.importorskip("numdifftools")
np.random.seed(7)
x = np.linspace(0, 100, num=50)
noise = np.random.normal(scale=0.25, size=x.size)
y = exponential(x, amplitude=5, decay=15) + noise
mod = ExponentialModel()
params = mod.guess(y, x=x)
# do fit, here with leastsq model
result = mod.fit(y, params, x=x, method='leastsq')
result_ndt = mod.fit(y, params, x=x, method=fit_method)
# assert that fit converged to the same result
vals = [result.params[p].value for p in result.params.valuesdict()]
vals_ndt = [result_ndt.params[p].value for p in result_ndt.params.valuesdict()]
assert_allclose(vals_ndt, vals, rtol=0.1)
assert_allclose(result_ndt.chisqr, result.chisqr, rtol=1e-5)
# assert that parameter uncertainties from leastsq and calculated from
# the covariance matrix using numdifftools are very similar
stderr = [result.params[p].stderr for p in result.params.valuesdict()]
stderr_ndt = [result_ndt.params[p].stderr for p in result_ndt.params.valuesdict()]
perr = np.array(stderr) / np.array(vals)
perr_ndt = np.array(stderr_ndt) / np.array(vals_ndt)
assert_almost_equal(perr_ndt, perr, decimal=3)
# assert that parameter correlatations from leastsq and calculated from
# the covariance matrix using numdifftools are very similar
for par1 in result.var_names:
cor = [result.params[par1].correl[par2] for par2 in
result.params[par1].correl.keys()]
cor_ndt = [result_ndt.params[par1].correl[par2] for par2 in
result_ndt.params[par1].correl.keys()]
assert_almost_equal(cor_ndt, cor, decimal=2)
@pytest.mark.parametrize("fit_method", ['nelder', 'basinhopping', 'ampgo',
'shgo', 'dual_annealing'])
def test_numdifftools_with_bounds(fit_method):
pytest.importorskip("numdifftools")
# load data to be fitted
data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..', 'examples',
'test_peak.dat'))
x = data[:, 0]
y = data[:, 1]
# define the model and initialize parameters
mod = VoigtModel()
params = mod.guess(y, x=x)
params['amplitude'].set(min=25, max=70)
params['sigma'].set(max=1)
params['center'].set(min=5, max=15)
# do fit, here with leastsq model
result = mod.fit(y, params, x=x, method='leastsq')
result_ndt = mod.fit(y, params, x=x, method=fit_method)
# assert that fit converged to the same result
vals = [result.params[p].value for p in result.params.valuesdict()]
vals_ndt = [result_ndt.params[p].value for p in result_ndt.params.valuesdict()]
assert_allclose(vals_ndt, vals, rtol=0.1)
assert_allclose(result_ndt.chisqr, result.chisqr, rtol=1e-5)
# assert that parameter uncertainties from leastsq and calculated from
# the covariance matrix using numdifftools are very similar
stderr = [result.params[p].stderr for p in result.params.valuesdict()]
stderr_ndt = [result_ndt.params[p].stderr for p in result_ndt.params.valuesdict()]
perr = np.array(stderr) / np.array(vals)
perr_ndt = np.array(stderr_ndt) / np.array(vals_ndt)
assert_almost_equal(perr_ndt, perr, decimal=3)
# assert that parameter correlatations from leastsq and calculated from
# the covariance matrix using numdifftools are very similar
for par1 in result.var_names:
cor = [result.params[par1].correl[par2] for par2 in
result.params[par1].correl.keys()]
cor_ndt = [result_ndt.params[par1].correl[par2] for par2 in
result_ndt.params[par1].correl.keys()]
assert_almost_equal(cor_ndt, cor, decimal=2)
def test_numdifftools_calc_covar_false():
pytest.importorskip("numdifftools")
# load data to be fitted
data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..', 'examples',
'test_peak.dat'))
x = data[:, 0]
y = data[:, 1]
# define the model and initialize parameters
mod = VoigtModel()
params = mod.guess(y, x=x)
params['sigma'].set(min=-np.inf)
# do fit, with leastsq and nelder
result = mod.fit(y, params, x=x, method='leastsq')
result_ndt = mod.fit(y, params, x=x, method='nelder', calc_covar=False)
# assert that fit converged to the same result
vals = [result.params[p].value for p in result.params.valuesdict()]
vals_ndt = [result_ndt.params[p].value for p in result_ndt.params.valuesdict()]
assert_allclose(vals_ndt, vals, rtol=5e-3)
assert_allclose(result_ndt.chisqr, result.chisqr)
assert result_ndt.covar is None
assert result_ndt.errorbars is False
def test_final_parameter_values():
model = LinearModel()
params = model.make_params()
params['intercept'].set(value=-1, min=-20, max=0)
params['slope'].set(value=1, min=-100, max=400)
np.random.seed(78281)
x = np.linspace(0, 9, 10)
y = x * 1.34 - 4.5 + np.random.normal(scale=0.05, size=x.size)
result = model.fit(y, x=x, method='nelder', params=params)
assert_almost_equal(result.chisqr, 0.014625543, decimal=6)
assert_almost_equal(result.params['intercept'].value, -4.511087126, decimal=6)
assert_almost_equal(result.params['slope'].value, 1.339685514, decimal=6)
|