1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
"""Tests for saving/loading Models and ModelResults."""
import json
import os
import time
import numpy as np
from numpy.testing import assert_allclose
import pytest
from lmfit import Parameters
from lmfit.lineshapes import gaussian, lorentzian
from lmfit.model import (Model, ModelResult, load_model, load_modelresult,
save_model, save_modelresult)
from lmfit.models import (ExponentialModel, ExpressionModel, GaussianModel,
SplineModel, VoigtModel)
y, x = np.loadtxt(os.path.join(os.path.dirname(__file__), '..',
'examples', 'NIST_Gauss2.dat')).T
SAVE_MODEL = 'model_1.sav'
SAVE_MODELRESULT = 'modelresult_1.sav'
MODELRESULT_LMFIT_1_0 = 'gauss_modelresult_lmfit100.sav'
def clear_savefile(fname):
"""Remove save files so that tests start fresh."""
try:
os.unlink(fname)
except OSError:
pass
def wait_for_file(fname, timeout=10):
"""Check whether file is created within certain amount of time."""
end_time = time.time() + timeout
while time.time() < end_time:
if os.path.exists(fname):
return True
time.sleep(0.05)
return False
def create_model_params(x, y):
"""Create the model and parameters."""
exp_mod = ExponentialModel(prefix='exp_')
params = exp_mod.guess(y, x=x)
gauss1 = GaussianModel(prefix='g1_')
params.update(gauss1.make_params())
gauss2 = GaussianModel(prefix='g2_')
params.update(gauss2.make_params())
params['g1_center'].set(value=105, min=75, max=125)
params['g1_sigma'].set(value=15, min=3)
params['g1_amplitude'].set(value=2000, min=10)
params['g2_center'].set(value=155, min=125, max=175)
params['g2_sigma'].set(value=15, min=3)
params['g2_amplitude'].set(value=2000, min=10)
model = gauss1 + gauss2 + exp_mod
return model, params
def check_fit_results(result):
"""Check the result of optimization."""
assert result.nvarys == 8
assert_allclose(result.chisqr, 1247.528209, rtol=1.0e-5)
assert_allclose(result.aic, 417.864631, rtol=1.0e-5)
pars = result.params
assert_allclose(pars['exp_decay'], 90.950886, rtol=1.0e-5)
assert_allclose(pars['exp_amplitude'], 99.018328, rtol=1.0e-5)
assert_allclose(pars['g1_sigma'], 16.672575, rtol=1.0e-5)
assert_allclose(pars['g1_center'], 107.030954, rtol=1.0e-5)
assert_allclose(pars['g1_amplitude'], 4257.773192, rtol=1.0e-5)
assert_allclose(pars['g1_fwhm'], 39.260914, rtol=1.0e-5)
assert_allclose(pars['g1_height'], 101.880231, rtol=1.0e-5)
assert_allclose(pars['g2_sigma'], 13.806948, rtol=1.0e-5)
assert_allclose(pars['g2_center'], 153.270101, rtol=1.0e-5)
assert_allclose(pars['g2_amplitude'], 2493.417703, rtol=1.0e-5)
assert_allclose(pars['g2_fwhm'], 32.512878, rtol=1.0e-5)
assert_allclose(pars['g2_height'], 72.045593, rtol=1.0e-5)
def test_save_load_model():
"""Save/load Model, now always asserting that dill is available."""
# create/save Model and perform some tests
model, _pars = create_model_params(x, y)
save_model(model, SAVE_MODEL)
file_exists = wait_for_file(SAVE_MODEL, timeout=10)
assert file_exists
with open(SAVE_MODEL) as fh:
text = fh.read()
assert 1000 < len(text) < 2500
# load the Model, perform fit and assert results
saved_model = load_model(SAVE_MODEL)
params = saved_model.make_params()
params['exp_decay'].set(100)
params['exp_amplitude'].set(100)
params['g1_center'].set(105, min=75, max=125)
params['g1_sigma'].set(15, min=3)
params['g1_amplitude'].set(2000, min=10)
params['g2_center'].set(155, min=125, max=175)
params['g2_sigma'].set(15, min=3)
params['g2_amplitude'].set(2000, min=10)
result = saved_model.fit(y, params, x=x)
check_fit_results(result)
clear_savefile(SAVE_MODEL)
def test_save_load_modelresult():
"""Save/load ModelResult now always asserting that dill is available."""
# create model, perform fit, save ModelResult and perform some tests
model, params = create_model_params(x, y)
result = model.fit(y, params, x=x)
save_modelresult(result, SAVE_MODELRESULT)
file_exists = wait_for_file(SAVE_MODELRESULT, timeout=10)
assert file_exists
text = ''
with open(SAVE_MODELRESULT) as fh:
text = fh.read()
assert 12000 < len(text) < 60000
# load the saved ModelResult from file and compare results
result_saved = load_modelresult(SAVE_MODELRESULT)
assert result_saved.residual is not None
check_fit_results(result_saved)
clear_savefile(SAVE_MODEL)
def test_load_legacy_modelresult():
"""Load legacy ModelResult."""
fname = os.path.join(os.path.dirname(__file__), MODELRESULT_LMFIT_1_0)
result_saved = load_modelresult(fname)
assert result_saved is not None
def test_saveload_modelresult_attributes():
"""Test for restoring all attributes of the ModelResult."""
model, params = create_model_params(x, y)
result = model.fit(y, params, x=x)
save_modelresult(result, SAVE_MODELRESULT)
time.sleep(0.25)
file_exists = wait_for_file(SAVE_MODELRESULT, timeout=10)
assert file_exists
time.sleep(0.25)
loaded = load_modelresult(SAVE_MODELRESULT)
assert len(result.data) == len(loaded.data)
assert_allclose(result.data, loaded.data)
for pname in result.params.keys():
assert_allclose(result.init_params[pname].value,
loaded.init_params[pname].value)
clear_savefile(SAVE_MODELRESULT)
def test_saveload_modelresult_exception():
"""Make sure the proper exceptions are raised when needed."""
model, _pars = create_model_params(x, y)
save_model(model, SAVE_MODEL)
with pytest.raises(AttributeError, match=r'needs saved ModelResult'):
load_modelresult(SAVE_MODEL)
clear_savefile(SAVE_MODEL)
@pytest.mark.parametrize("method", ['leastsq', 'nelder', 'powell', 'cobyla',
'bfgs', 'lbfgsb', 'differential_evolution',
'brute', 'basinhopping', 'ampgo', 'shgo',
'dual_annealing'])
def test_saveload_modelresult_roundtrip(method):
"""Test for modelresult.loads()/dumps() and repeating that."""
def mfunc(x, a, b):
return a * (x-b)
model = Model(mfunc)
params = model.make_params(a=0.1, b=3.0)
params['a'].set(min=.01, max=1, brute_step=0.01)
params['b'].set(min=.01, max=3.1, brute_step=0.01)
np.random.seed(2020)
xx = np.linspace(-5, 5, 201)
yy = 0.5 * (xx - 0.22) + np.random.normal(scale=0.01, size=xx.size)
result1 = model.fit(yy, params=params, x=xx, method=method)
result2 = ModelResult(model, Parameters())
result2.loads(result1.dumps(), funcdefs={'mfunc': mfunc})
result3 = ModelResult(model, Parameters())
result3.loads(result2.dumps(), funcdefs={'mfunc': mfunc})
assert result3 is not None
assert_allclose(result2.params['a'], 0.5, rtol=1.0e-2)
assert_allclose(result2.params['b'], 0.22, rtol=1.0e-2)
assert_allclose(result3.params['a'], 0.50, rtol=1.0e-2)
assert_allclose(result3.params['b'], 0.22, rtol=1.0e-2)
def test_saveload_modelresult_roundtrip_user_expr_function():
"""Test for modelresult.loads()/dumps() for a model with user defined expr function."""
def mfunc(x, a, b):
return a * (x-b)
def expr_func(x):
return 3 * x
model = Model(mfunc)
params = Parameters(usersyms={"expr_func": expr_func})
params.add("a", min=.01, max=1)
params.add("b", min=.01, max=3.1)
params.add("c", expr="expr_func(a)")
np.random.seed(2020)
xx = np.linspace(-5, 5, 201)
yy = 0.5 * (xx - 0.22) + np.random.normal(scale=0.01, size=xx.size)
result1 = model.fit(yy, params=params, x=xx)
result2 = ModelResult(model, Parameters())
result2.loads(result1.dumps(), funcdefs={'mfunc': mfunc, 'expr_func': expr_func})
assert result1.userfcn == result2.userfcn
assert result1.params == result2.params
assert result1.init_params == result2.init_params
assert set(result1.params._asteval.symtable) == set(result2.params._asteval.symtable)
def test_saveload_modelresult_eval_uncertainty():
"""Test for ModelResult.loads() and eval_uncertainty
GH Issue #909
"""
savefile = 'modres_x.txt'
x = np.linspace(-10, 10, 201)
amp, cen, wid = 3.4, 1.8, 0.5
y = amp * np.exp(-(x-cen)**2 / (2*wid**2)) / (np.sqrt(2*np.pi)*wid)
y += np.random.normal(size=x.size, scale=0.01)
gmod = GaussianModel()
result = gmod.fit(y, x=x, amplitude=5, center=2, sigma=1)
save_modelresult(result, savefile)
time.sleep(0.25)
result2 = load_modelresult(savefile)
dymod = result2.eval_uncertainty()
assert len(dymod) == len(x)
assert dymod.sum() > 0.
os.unlink(savefile)
def test_saveload_modelresult_expression_model():
"""Test for ModelResult.loads()/dumps() for ExpressionModel.
* make sure that the loaded ModelResult has `init_params` and `init_fit`.
"""
savefile = 'expr_modres.txt'
x = np.linspace(-10, 10, 201)
amp, cen, wid = 3.4, 1.8, 0.5
y = amp * np.exp(-(x-cen)**2 / (2*wid**2)) / (np.sqrt(2*np.pi)*wid)
y = y + np.random.normal(size=x.size, scale=0.01)
gmod = ExpressionModel("amp * exp(-(x-cen)**2 /(2*wid**2))/(sqrt(2*pi)*wid)")
result = gmod.fit(y, x=x, amp=5, cen=5, wid=1)
save_modelresult(result, savefile)
time.sleep(0.25)
result2 = load_modelresult(savefile)
assert result2 is not None
assert result2.residual is not None
assert result2.init_fit is not None
assert_allclose((result2.init_fit - result.init_fit).sum() + 1.00, 1.00,
rtol=1.0e-2)
os.unlink(savefile)
def test_saveload_modelresult_spline_model(tmp_path):
"""Test for ModelResult.loads()/dumps() for Spline Model.
The spline model is a special case with a possibly indefinite
amount of arguments. This is a problem for model parsing and
as a workaround, the number of knots was increased to 100 as
discussed in https://github.com/lmfit/lmfit-py/issues/985.
"""
number_of_knots = 80
model_file = tmp_path / 'spline_modelresult.sav'
xx = np.linspace(-10, 10, 100)
yy = 0.6*np.exp(-(xx**2)/(1.3**2))
spl_model = SplineModel(xknots=np.linspace(-10, 10, number_of_knots))
params = spl_model.guess(yy, xx)
result = spl_model.fit(yy, params, x=xx)
save_modelresult(result, model_file)
time.sleep(0.25)
result2 = load_modelresult(model_file)
# accuracy of storing data should be above 12 decimals
assert_allclose(result.residual, result2.residual, rtol=0, atol=1e-12)
assert_allclose(list(result.best_values.values()),
list(result2.best_values.values()),
rtol=0, atol=1e-12)
assert_allclose(list(result.init_values.values()),
list(result2.init_values.values()),
rtol=0, atol=1e-12)
assert_allclose(list(result.values.values()),
list(result2.values.values()),
rtol=0, atol=1e-12)
assert_allclose(result.covar, result2.covar, rtol=0, atol=1e-12)
assert_allclose(result.userargs[0], result2.userargs[0],
rtol=0, atol=1e-12)
assert_allclose(result.userkws["x"], result2.userkws["x"],
rtol=0, atol=1e-12)
for attr in ('best_fit', 'init_fit'):
val1 = getattr(result, attr)
val2 = getattr(result2, attr)
assert_allclose(val1.mean(), val2.mean(), rtol=0.01, atol=0.01)
for attr in ['aborted', 'aic', 'bic', 'chisqr', 'ci_out', 'col_deriv',
'errorbars', 'flatchain', 'ier', 'lmdif_message', 'message',
'method', 'nan_policy', 'ndata', 'nfev', 'nfree', 'nvarys',
'redchi', 'rsquared', 'scale_covar', 'calc_covar', 'success',
'var_names', 'weights', 'user_options']:
val1 = getattr(result, attr)
val2 = getattr(result2, attr)
if val1 is None:
assert val2 is None
else:
assert val1 == val2
def test_saveload_usersyms():
"""Test save/load of ModelResult with non-trivial user symbols.
This example uses a VoigtModel, where `wofz()` is used in a constraint
expression.
"""
x = np.linspace(0, 20, 501)
y = gaussian(x, 1.1, 8.5, 2) + lorentzian(x, 1.7, 8.5, 1.5)
np.random.seed(20)
y = y + np.random.normal(size=len(x), scale=0.025)
model = VoigtModel()
pars = model.guess(y, x=x)
result = model.fit(y, pars, x=x)
savefile = 'tmpvoigt_modelresult.sav'
save_modelresult(result, savefile)
assert_allclose(result.params['sigma'], 1.075487, rtol=1.0e-5)
assert_allclose(result.params['center'], 8.489738, rtol=1.0e-5)
assert_allclose(result.params['height'], 0.557778, rtol=1.0e-5)
time.sleep(0.25)
result2 = load_modelresult(savefile)
assert result2.residual is not None
assert_allclose(result2.params['sigma'], 1.075487, rtol=1.0e-5)
assert_allclose(result2.params['center'], 8.489738, rtol=1.0e-5)
assert_allclose(result2.params['height'], 0.557778, rtol=1.0e-5)
def test_modelresult_summary():
"""Test summary() method of ModelResult.
"""
x = np.linspace(0, 20, 501)
y = gaussian(x, 1.1, 8.5, 2) + lorentzian(x, 1.7, 8.5, 1.5)
np.random.seed(20)
y = y + np.random.normal(size=len(x), scale=0.025)
model = VoigtModel()
pars = model.guess(y, x=x)
result = model.fit(y, pars, x=x)
summary = result.summary()
assert isinstance(summary, dict)
for attr in ('ndata', 'nvarys', 'nfree', 'chisqr', 'redchi', 'aic',
'bic', 'rsquared', 'nfev', 'max_nfev', 'aborted',
'errorbars', 'success', 'message', 'lmdif_message', 'ier',
'nan_policy', 'scale_covar', 'calc_covar', 'ci_out',
'col_deriv', 'flatchain', 'call_kws', 'var_names',
'user_options', 'kws', 'init_values', 'best_values'):
val = summary.get(attr, '__INVALID__')
assert val != '__INVALID__'
assert len(json.dumps(summary)) > 100
def test_load_model_versions():
"""test multiple loading saved models from different
python and lmfit versions:
note that providing the model function is important - these
cannot be transferred between Python versions
"""
def local_sine(x, amp, freq, shift):
return amp * np.sin(x*freq + shift)
x = np.linspace(0, 10, 101)
for fname in ('sinemodel_py310_lm122.sav',
'sinemodel_py311_lm122.sav',
'sinemodel_py312_lm122.sav'):
fpath = os.path.join(os.path.dirname(__file__), 'saved_models', fname)
mod = load_model(fpath, funcdefs={'mysine': local_sine})
pars = mod.make_params(amp=2, freq=0.8, shift=0.200)
y = mod.eval(pars, x=x)
assert y.max() > 1.55
assert y.min() < -1.55
|