File: test_model_saveload.py

package info (click to toggle)
lmfit-py 1.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,332 kB
  • sloc: python: 13,071; makefile: 130; sh: 30
file content (442 lines) | stat: -rw-r--r-- 15,050 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
"""Tests for saving/loading Models and ModelResults."""

import json
import os
import time

import numpy as np
from numpy.testing import assert_allclose
import pytest

from lmfit import Parameters
from lmfit.lineshapes import gaussian, lorentzian
from lmfit.model import (Model, ModelResult, load_model, load_modelresult,
                         save_model, save_modelresult)
from lmfit.models import (ExponentialModel, ExpressionModel, GaussianModel,
                          SplineModel, VoigtModel)

y, x = np.loadtxt(os.path.join(os.path.dirname(__file__), '..',
                               'examples', 'NIST_Gauss2.dat')).T

SAVE_MODEL = 'model_1.sav'
SAVE_MODELRESULT = 'modelresult_1.sav'

MODELRESULT_LMFIT_1_0 = 'gauss_modelresult_lmfit100.sav'


def clear_savefile(fname):
    """Remove save files so that tests start fresh."""
    try:
        os.unlink(fname)
    except OSError:
        pass


def wait_for_file(fname, timeout=10):
    """Check whether file is created within certain amount of time."""
    end_time = time.time() + timeout
    while time.time() < end_time:
        if os.path.exists(fname):
            return True
        time.sleep(0.05)
    return False


def create_model_params(x, y):
    """Create the model and parameters."""
    exp_mod = ExponentialModel(prefix='exp_')
    params = exp_mod.guess(y, x=x)

    gauss1 = GaussianModel(prefix='g1_')
    params.update(gauss1.make_params())

    gauss2 = GaussianModel(prefix='g2_')
    params.update(gauss2.make_params())

    params['g1_center'].set(value=105, min=75, max=125)
    params['g1_sigma'].set(value=15, min=3)
    params['g1_amplitude'].set(value=2000, min=10)

    params['g2_center'].set(value=155, min=125, max=175)
    params['g2_sigma'].set(value=15, min=3)
    params['g2_amplitude'].set(value=2000, min=10)

    model = gauss1 + gauss2 + exp_mod
    return model, params


def check_fit_results(result):
    """Check the result of optimization."""
    assert result.nvarys == 8
    assert_allclose(result.chisqr, 1247.528209, rtol=1.0e-5)
    assert_allclose(result.aic, 417.864631, rtol=1.0e-5)

    pars = result.params
    assert_allclose(pars['exp_decay'], 90.950886, rtol=1.0e-5)
    assert_allclose(pars['exp_amplitude'], 99.018328, rtol=1.0e-5)

    assert_allclose(pars['g1_sigma'], 16.672575, rtol=1.0e-5)
    assert_allclose(pars['g1_center'], 107.030954, rtol=1.0e-5)
    assert_allclose(pars['g1_amplitude'], 4257.773192, rtol=1.0e-5)
    assert_allclose(pars['g1_fwhm'], 39.260914, rtol=1.0e-5)
    assert_allclose(pars['g1_height'], 101.880231, rtol=1.0e-5)

    assert_allclose(pars['g2_sigma'], 13.806948, rtol=1.0e-5)
    assert_allclose(pars['g2_center'], 153.270101, rtol=1.0e-5)
    assert_allclose(pars['g2_amplitude'], 2493.417703, rtol=1.0e-5)
    assert_allclose(pars['g2_fwhm'], 32.512878, rtol=1.0e-5)
    assert_allclose(pars['g2_height'], 72.045593, rtol=1.0e-5)


def test_save_load_model():
    """Save/load Model, now always asserting that dill is available."""
    # create/save Model and perform some tests
    model, _pars = create_model_params(x, y)
    save_model(model, SAVE_MODEL)

    file_exists = wait_for_file(SAVE_MODEL, timeout=10)
    assert file_exists

    with open(SAVE_MODEL) as fh:
        text = fh.read()
    assert 1000 < len(text) < 2500

    # load the Model, perform fit and assert results
    saved_model = load_model(SAVE_MODEL)
    params = saved_model.make_params()

    params['exp_decay'].set(100)
    params['exp_amplitude'].set(100)
    params['g1_center'].set(105, min=75, max=125)
    params['g1_sigma'].set(15, min=3)
    params['g1_amplitude'].set(2000, min=10)

    params['g2_center'].set(155, min=125, max=175)
    params['g2_sigma'].set(15, min=3)
    params['g2_amplitude'].set(2000, min=10)

    result = saved_model.fit(y, params, x=x)
    check_fit_results(result)

    clear_savefile(SAVE_MODEL)


def test_save_load_modelresult():
    """Save/load ModelResult now always asserting that dill is available."""
    # create model, perform fit, save ModelResult and perform some tests
    model, params = create_model_params(x, y)
    result = model.fit(y, params, x=x)
    save_modelresult(result, SAVE_MODELRESULT)

    file_exists = wait_for_file(SAVE_MODELRESULT, timeout=10)
    assert file_exists

    text = ''
    with open(SAVE_MODELRESULT) as fh:
        text = fh.read()
    assert 12000 < len(text) < 60000

    # load the saved ModelResult from file and compare results
    result_saved = load_modelresult(SAVE_MODELRESULT)
    assert result_saved.residual is not None
    check_fit_results(result_saved)

    clear_savefile(SAVE_MODEL)


def test_load_legacy_modelresult():
    """Load legacy ModelResult."""
    fname = os.path.join(os.path.dirname(__file__), MODELRESULT_LMFIT_1_0)
    result_saved = load_modelresult(fname)
    assert result_saved is not None


def test_saveload_modelresult_attributes():
    """Test for restoring all attributes of the ModelResult."""
    model, params = create_model_params(x, y)
    result = model.fit(y, params, x=x)
    save_modelresult(result, SAVE_MODELRESULT)

    time.sleep(0.25)
    file_exists = wait_for_file(SAVE_MODELRESULT, timeout=10)
    assert file_exists
    time.sleep(0.25)

    loaded = load_modelresult(SAVE_MODELRESULT)

    assert len(result.data) == len(loaded.data)
    assert_allclose(result.data, loaded.data)

    for pname in result.params.keys():
        assert_allclose(result.init_params[pname].value,
                        loaded.init_params[pname].value)

    clear_savefile(SAVE_MODELRESULT)


def test_saveload_modelresult_exception():
    """Make sure the proper exceptions are raised when needed."""
    model, _pars = create_model_params(x, y)
    save_model(model, SAVE_MODEL)

    with pytest.raises(AttributeError, match=r'needs saved ModelResult'):
        load_modelresult(SAVE_MODEL)
    clear_savefile(SAVE_MODEL)


@pytest.mark.parametrize("method", ['leastsq', 'nelder', 'powell', 'cobyla',
                                    'bfgs', 'lbfgsb', 'differential_evolution',
                                    'brute', 'basinhopping', 'ampgo', 'shgo',
                                    'dual_annealing'])
def test_saveload_modelresult_roundtrip(method):
    """Test for modelresult.loads()/dumps() and repeating that."""
    def mfunc(x, a, b):
        return a * (x-b)

    model = Model(mfunc)
    params = model.make_params(a=0.1, b=3.0)
    params['a'].set(min=.01, max=1, brute_step=0.01)
    params['b'].set(min=.01, max=3.1, brute_step=0.01)

    np.random.seed(2020)
    xx = np.linspace(-5, 5, 201)
    yy = 0.5 * (xx - 0.22) + np.random.normal(scale=0.01, size=xx.size)

    result1 = model.fit(yy, params=params, x=xx, method=method)

    result2 = ModelResult(model, Parameters())
    result2.loads(result1.dumps(), funcdefs={'mfunc': mfunc})

    result3 = ModelResult(model, Parameters())
    result3.loads(result2.dumps(), funcdefs={'mfunc': mfunc})

    assert result3 is not None
    assert_allclose(result2.params['a'], 0.5, rtol=1.0e-2)
    assert_allclose(result2.params['b'], 0.22, rtol=1.0e-2)
    assert_allclose(result3.params['a'], 0.50, rtol=1.0e-2)
    assert_allclose(result3.params['b'], 0.22, rtol=1.0e-2)


def test_saveload_modelresult_roundtrip_user_expr_function():
    """Test for modelresult.loads()/dumps() for a model with user defined expr function."""

    def mfunc(x, a, b):
        return a * (x-b)

    def expr_func(x):
        return 3 * x

    model = Model(mfunc)
    params = Parameters(usersyms={"expr_func": expr_func})
    params.add("a", min=.01, max=1)
    params.add("b", min=.01, max=3.1)
    params.add("c", expr="expr_func(a)")

    np.random.seed(2020)
    xx = np.linspace(-5, 5, 201)
    yy = 0.5 * (xx - 0.22) + np.random.normal(scale=0.01, size=xx.size)

    result1 = model.fit(yy, params=params, x=xx)

    result2 = ModelResult(model, Parameters())
    result2.loads(result1.dumps(), funcdefs={'mfunc': mfunc, 'expr_func': expr_func})

    assert result1.userfcn == result2.userfcn
    assert result1.params == result2.params
    assert result1.init_params == result2.init_params
    assert set(result1.params._asteval.symtable) == set(result2.params._asteval.symtable)


def test_saveload_modelresult_eval_uncertainty():
    """Test for ModelResult.loads() and eval_uncertainty
    GH Issue #909

    """
    savefile = 'modres_x.txt'
    x = np.linspace(-10, 10, 201)
    amp, cen, wid = 3.4, 1.8, 0.5

    y = amp * np.exp(-(x-cen)**2 / (2*wid**2)) / (np.sqrt(2*np.pi)*wid)
    y += np.random.normal(size=x.size, scale=0.01)

    gmod = GaussianModel()
    result = gmod.fit(y, x=x, amplitude=5, center=2, sigma=1)
    save_modelresult(result, savefile)
    time.sleep(0.25)

    result2 = load_modelresult(savefile)

    dymod = result2.eval_uncertainty()

    assert len(dymod) == len(x)
    assert dymod.sum() > 0.
    os.unlink(savefile)


def test_saveload_modelresult_expression_model():
    """Test for ModelResult.loads()/dumps() for ExpressionModel.

    * make sure that the loaded ModelResult has `init_params` and `init_fit`.

    """
    savefile = 'expr_modres.txt'
    x = np.linspace(-10, 10, 201)
    amp, cen, wid = 3.4, 1.8, 0.5

    y = amp * np.exp(-(x-cen)**2 / (2*wid**2)) / (np.sqrt(2*np.pi)*wid)
    y = y + np.random.normal(size=x.size, scale=0.01)

    gmod = ExpressionModel("amp * exp(-(x-cen)**2 /(2*wid**2))/(sqrt(2*pi)*wid)")
    result = gmod.fit(y, x=x, amp=5, cen=5, wid=1)
    save_modelresult(result, savefile)
    time.sleep(0.25)

    result2 = load_modelresult(savefile)

    assert result2 is not None
    assert result2.residual is not None
    assert result2.init_fit is not None
    assert_allclose((result2.init_fit - result.init_fit).sum() + 1.00, 1.00,
                    rtol=1.0e-2)
    os.unlink(savefile)


def test_saveload_modelresult_spline_model(tmp_path):
    """Test for ModelResult.loads()/dumps() for Spline Model.

    The spline model is a special case with a possibly indefinite
    amount of arguments. This is a problem for model parsing and
    as a workaround, the number of knots was increased to 100 as
    discussed in https://github.com/lmfit/lmfit-py/issues/985.
    """
    number_of_knots = 80
    model_file = tmp_path / 'spline_modelresult.sav'
    xx = np.linspace(-10, 10, 100)
    yy = 0.6*np.exp(-(xx**2)/(1.3**2))

    spl_model = SplineModel(xknots=np.linspace(-10, 10, number_of_knots))
    params = spl_model.guess(yy, xx)
    result = spl_model.fit(yy, params, x=xx)

    save_modelresult(result, model_file)

    time.sleep(0.25)

    result2 = load_modelresult(model_file)

    # accuracy of storing data should be above 12 decimals
    assert_allclose(result.residual, result2.residual, rtol=0, atol=1e-12)
    assert_allclose(list(result.best_values.values()),
                    list(result2.best_values.values()),
                    rtol=0, atol=1e-12)
    assert_allclose(list(result.init_values.values()),
                    list(result2.init_values.values()),
                    rtol=0, atol=1e-12)
    assert_allclose(list(result.values.values()),
                    list(result2.values.values()),
                    rtol=0, atol=1e-12)
    assert_allclose(result.covar, result2.covar, rtol=0, atol=1e-12)
    assert_allclose(result.userargs[0], result2.userargs[0],
                    rtol=0, atol=1e-12)
    assert_allclose(result.userkws["x"], result2.userkws["x"],
                    rtol=0, atol=1e-12)
    for attr in ('best_fit', 'init_fit'):
        val1 = getattr(result, attr)
        val2 = getattr(result2, attr)
        assert_allclose(val1.mean(), val2.mean(), rtol=0.01, atol=0.01)

    for attr in ['aborted', 'aic', 'bic', 'chisqr', 'ci_out', 'col_deriv',
                 'errorbars', 'flatchain', 'ier', 'lmdif_message', 'message',
                 'method', 'nan_policy', 'ndata', 'nfev', 'nfree', 'nvarys',
                 'redchi', 'rsquared', 'scale_covar', 'calc_covar', 'success',
                 'var_names', 'weights', 'user_options']:
        val1 = getattr(result, attr)
        val2 = getattr(result2, attr)
        if val1 is None:
            assert val2 is None
        else:
            assert val1 == val2


def test_saveload_usersyms():
    """Test save/load of ModelResult with non-trivial user symbols.

    This example uses a VoigtModel, where `wofz()` is used in a constraint
    expression.

    """
    x = np.linspace(0, 20, 501)
    y = gaussian(x, 1.1, 8.5, 2) + lorentzian(x, 1.7, 8.5, 1.5)
    np.random.seed(20)
    y = y + np.random.normal(size=len(x), scale=0.025)

    model = VoigtModel()
    pars = model.guess(y, x=x)
    result = model.fit(y, pars, x=x)

    savefile = 'tmpvoigt_modelresult.sav'
    save_modelresult(result, savefile)

    assert_allclose(result.params['sigma'], 1.075487, rtol=1.0e-5)
    assert_allclose(result.params['center'], 8.489738, rtol=1.0e-5)
    assert_allclose(result.params['height'], 0.557778, rtol=1.0e-5)

    time.sleep(0.25)
    result2 = load_modelresult(savefile)

    assert result2.residual is not None
    assert_allclose(result2.params['sigma'], 1.075487, rtol=1.0e-5)
    assert_allclose(result2.params['center'], 8.489738, rtol=1.0e-5)
    assert_allclose(result2.params['height'], 0.557778, rtol=1.0e-5)


def test_modelresult_summary():
    """Test summary() method of ModelResult.
    """
    x = np.linspace(0, 20, 501)
    y = gaussian(x, 1.1, 8.5, 2) + lorentzian(x, 1.7, 8.5, 1.5)
    np.random.seed(20)
    y = y + np.random.normal(size=len(x), scale=0.025)

    model = VoigtModel()
    pars = model.guess(y, x=x)
    result = model.fit(y, pars, x=x)

    summary = result.summary()

    assert isinstance(summary, dict)

    for attr in ('ndata', 'nvarys', 'nfree', 'chisqr', 'redchi', 'aic',
                 'bic', 'rsquared', 'nfev', 'max_nfev', 'aborted',
                 'errorbars', 'success', 'message', 'lmdif_message', 'ier',
                 'nan_policy', 'scale_covar', 'calc_covar', 'ci_out',
                 'col_deriv', 'flatchain', 'call_kws', 'var_names',
                 'user_options', 'kws', 'init_values', 'best_values'):
        val = summary.get(attr, '__INVALID__')
        assert val != '__INVALID__'

    assert len(json.dumps(summary)) > 100


def test_load_model_versions():
    """test multiple loading saved models from different
    python and lmfit versions:

    note that providing the model function is important - these
    cannot be transferred between Python versions
    """
    def local_sine(x, amp, freq, shift):
        return amp * np.sin(x*freq + shift)

    x = np.linspace(0, 10, 101)

    for fname in ('sinemodel_py310_lm122.sav',
                  'sinemodel_py311_lm122.sav',
                  'sinemodel_py312_lm122.sav'):
        fpath = os.path.join(os.path.dirname(__file__), 'saved_models', fname)

        mod = load_model(fpath, funcdefs={'mysine': local_sine})
        pars = mod.make_params(amp=2, freq=0.8, shift=0.200)
        y = mod.eval(pars, x=x)
        assert y.max() > 1.55
        assert y.min() < -1.55