1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
"""Tests for the Parameters class."""
from copy import copy, deepcopy
import os
import pickle
import numpy as np
from numpy.testing import assert_allclose
import pytest
import lmfit
from lmfit.models import VoigtModel
@pytest.fixture
def parameters():
"""Initialize a Parameters class for tests."""
pars = lmfit.Parameters()
pars.add(lmfit.Parameter(name='a', value=10.0, vary=True, min=-100.0,
max=100.0, expr=None, brute_step=5.0,
user_data=1))
pars.add(lmfit.Parameter(name='b', value=0.0, vary=True, min=-250.0,
max=250.0, expr="2.0*a", brute_step=25.0,
user_data={'test': 123}))
exp_attr_values_A = ('a', 10.0, True, -100.0, 100.0, None, 5.0, 1)
exp_attr_values_B = ('b', 20.0, False, -250.0, 250.0, "2.0*a", 25.0, {'test': 123})
assert_parameter_attributes(pars['a'], exp_attr_values_A)
assert_parameter_attributes(pars['b'], exp_attr_values_B)
return pars, exp_attr_values_A, exp_attr_values_B
def assert_parameter_attributes(par, expected):
"""Assert that parameter attributes have the expected values."""
par_attr_values = (par.name, par._val, par.vary, par.min, par.max,
par._expr, par.brute_step, par.user_data)
assert par_attr_values == expected
def test_check_ast_errors():
"""Assert that an exception is raised upon AST errors."""
pars = lmfit.Parameters()
msg = "name 'par2' is not defined"
with pytest.raises(NameError, match=msg):
pars.add('par1', expr='2.0*par2')
def test_parameters_init_with_usersyms():
"""Test for initialization of the Parameters class with usersyms."""
pars = lmfit.Parameters(usersyms={'test': np.sin})
assert 'test' in pars._asteval.symtable
def test_parameters_copy(parameters):
"""Tests for copying a Parameters class; all use the __deepcopy__ method."""
pars, exp_attr_values_A, exp_attr_values_B = parameters
copy_pars = copy(pars)
pars_copy = pars.copy()
pars__copy__ = pars.__copy__()
# modifying the original parameters should not modify the copies
pars['a'].set(value=100)
pars['b'].user_data['test'] = 456
for copied in [copy_pars, pars_copy, pars__copy__]:
assert isinstance(copied, lmfit.Parameters)
assert copied != pars
assert copied._asteval is not None
assert copied._asteval.symtable is not None
assert_parameter_attributes(copied['a'], exp_attr_values_A)
assert_parameter_attributes(copied['b'], exp_attr_values_B)
def test_parameters_deepcopy(parameters):
"""Tests for deepcopy of a Parameters class."""
pars, _, _ = parameters
deepcopy_pars = deepcopy(pars)
assert isinstance(deepcopy_pars, lmfit.Parameters)
assert deepcopy_pars == pars
# check that we can add a symbol to the interpreter
pars['b'].expr = 'sin(1)'
pars['b'].value = 10
assert_allclose(pars['b'].value, np.sin(1))
assert_allclose(pars._asteval.symtable['b'], np.sin(1))
# check that the symbols in the interpreter are still the same after
# deepcopying
pars, exp_attr_values_A, exp_attr_values_B = parameters
deepcopy_pars = deepcopy(pars)
unique_symbols_pars = pars._asteval.user_defined_symbols()
unique_symbols_copied = deepcopy_pars._asteval.user_defined_symbols()
assert unique_symbols_copied == unique_symbols_pars
for unique_symbol in unique_symbols_copied:
if pars._asteval.symtable[unique_symbol] is not np.nan:
assert (pars._asteval.symtable[unique_symbol] ==
deepcopy_pars._asteval.symtable[unique_symbol])
def test_parameters_deepcopy_subclass():
"""Test that a subclass of parameters is preserved when performing a deepcopy"""
class ParametersSubclass(lmfit.Parameters):
pass
parameters = ParametersSubclass()
assert isinstance(parameters, ParametersSubclass)
parameterscopy = deepcopy(parameters)
assert isinstance(parameterscopy, ParametersSubclass)
def test_parameters_update(parameters):
"""Tests for updating a Parameters class."""
pars, exp_attr_values_A, exp_attr_values_B = parameters
msg = r"'test' is not a Parameters object"
with pytest.raises(ValueError, match=msg):
pars.update('test')
pars2 = lmfit.Parameters()
pars2.add(lmfit.Parameter(name='c', value=7.0, vary=True, min=-70.0,
max=70.0, expr=None, brute_step=0.7,
user_data=7))
exp_attr_values_C = ('c', 7.0, True, -70.0, 70.0, None, 0.7, 7)
pars_updated = pars.update(pars2)
assert_parameter_attributes(pars_updated['a'], exp_attr_values_A)
assert_parameter_attributes(pars_updated['b'], exp_attr_values_B)
assert_parameter_attributes(pars_updated['c'], exp_attr_values_C)
def test_parameters__setitem__(parameters):
"""Tests for __setitem__ method of a Parameters class."""
pars, _, exp_attr_values_B = parameters
msg = r"'10' is not a valid Parameters name"
with pytest.raises(KeyError, match=msg):
pars.__setitem__('10', None)
msg = r"'not_a_parameter' is not a Parameter"
with pytest.raises(ValueError, match=msg):
pars.__setitem__('a', 'not_a_parameter')
par = lmfit.Parameter('b', value=10, min=-25.0, brute_step=1)
pars.__setitem__('b', par)
exp_attr_values_B = ('b', 10, True, -25.0, np.inf, None, 1, None)
assert_parameter_attributes(pars['b'], exp_attr_values_B)
def test_parameters__add__(parameters):
"""Test the __add__ magic method."""
pars, exp_attr_values_A, exp_attr_values_B = parameters
msg = r"'other' is not a Parameters object"
with pytest.raises(ValueError, match=msg):
_ = pars + 'other'
pars2 = lmfit.Parameters()
pars2.add_many(('c', 1., True, None, None, None),
('d', 2., True, None, None, None))
exp_attr_values_C = ('c', 1, True, -np.inf, np.inf, None, None, None)
exp_attr_values_D = ('d', 2, True, -np.inf, np.inf, None, None, None)
pars_added = pars + pars2
assert_parameter_attributes(pars_added['a'], exp_attr_values_A)
assert_parameter_attributes(pars_added['b'], exp_attr_values_B)
assert_parameter_attributes(pars_added['c'], exp_attr_values_C)
assert_parameter_attributes(pars_added['d'], exp_attr_values_D)
def test_parameters__iadd__(parameters):
"""Test the __iadd__ magic method."""
pars, exp_attr_values_A, exp_attr_values_B = parameters
msg = r"'other' is not a Parameters object"
with pytest.raises(ValueError, match=msg):
pars += 'other'
pars2 = lmfit.Parameters()
pars2.add_many(('c', 1., True, None, None, None),
('d', 2., True, None, None, None))
exp_attr_values_C = ('c', 1, True, -np.inf, np.inf, None, None, None)
exp_attr_values_D = ('d', 2, True, -np.inf, np.inf, None, None, None)
pars += pars2
assert_parameter_attributes(pars['a'], exp_attr_values_A)
assert_parameter_attributes(pars['b'], exp_attr_values_B)
assert_parameter_attributes(pars['c'], exp_attr_values_C)
assert_parameter_attributes(pars['d'], exp_attr_values_D)
def test_parameters_add_with_symtable():
"""Regression test for GitHub Issue 607."""
pars1 = lmfit.Parameters()
pars1.add('a', value=1.0)
def half(x):
return 0.5*x
pars2 = lmfit.Parameters(usersyms={"half": half})
pars2.add("b", value=3.0)
pars2.add("c", expr="half(b)")
params = pars1 + pars2
assert_allclose(params['c'].value, 1.5)
params = pars2 + pars1
assert_allclose(params['c'].value, 1.5)
params = deepcopy(pars1)
params.update(pars2)
assert_allclose(params['c'].value, 1.5)
pars1 += pars2
assert_allclose(params['c'].value, 1.5)
def test_parameters__array__(parameters):
"""Test the __array__ magic method."""
pars, _, _ = parameters
assert_allclose(np.asarray(pars), np.asarray([10.0, 20.0]))
def test_parameters__reduce__(parameters):
"""Test the __reduce__ magic method."""
pars, _, _ = parameters
reduced = pars.__reduce__()
assert isinstance(reduced[2], dict)
assert 'unique_symbols' in reduced[2].keys()
assert reduced[2]['unique_symbols']['b'] == 20
assert 'params' in reduced[2].keys()
assert isinstance(reduced[2]['params'][0], lmfit.Parameter)
def test_parameters__setstate__(parameters):
"""Test the __setstate__ magic method."""
pars, exp_attr_values_A, exp_attr_values_B = parameters
reduced = pars.__reduce__()
pars_setstate = lmfit.Parameters()
pars_setstate.__setstate__(reduced[2])
assert isinstance(pars_setstate, lmfit.Parameters)
assert_parameter_attributes(pars_setstate['a'], exp_attr_values_A)
assert_parameter_attributes(pars_setstate['b'], exp_attr_values_B)
def test_pickle_parameters():
"""Test that we can pickle a Parameters object."""
p = lmfit.Parameters()
p.add('a', 10, True, 0, 100)
p.add('b', 10, True, 0, 100, 'a * sin(1)')
p.update_constraints()
p._asteval.symtable['abc'] = '2 * 3.142'
pkl = pickle.dumps(p, -1)
q = pickle.loads(pkl)
q.update_constraints()
assert p == q
assert p is not q
# now test if the asteval machinery survived
assert q._asteval.symtable['abc'] == '2 * 3.142'
# check that unpickling of Parameters is not affected by expr that
# refer to Parameter that are added later on. In the following
# example var_0.expr refers to var_1, which is a Parameter later
# on in the Parameters dictionary.
p = lmfit.Parameters()
p.add('var_0', value=1)
p.add('var_1', value=2)
p['var_0'].expr = 'var_1'
pkl = pickle.dumps(p)
q = pickle.loads(pkl)
def test_parameters_eval(parameters):
"""Test the eval method."""
pars, _, _ = parameters
evaluated = pars.eval('10.0*a+b')
assert_allclose(evaluated, 120)
# check that eval() works with usersyms and parameter values
def myfun(x):
return 2.0 * x
pars2 = lmfit.Parameters(usersyms={"myfun": myfun})
pars2.add('a', value=4.0)
pars2.add('b', value=3.0)
assert_allclose(pars2.eval('myfun(2.0) * a'), 16)
assert_allclose(pars2.eval('b / myfun(3.0)'), 0.5)
def test_parameters_pretty_repr(parameters):
"""Test the pretty_repr method."""
pars, _, _ = parameters
output = pars.pretty_repr()
output_oneline = pars.pretty_repr(oneline=True)
split_output = output.split('\n')
assert len(split_output) == 5
assert 'Parameters' in split_output[0]
assert "Parameter 'a'" in split_output[1]
assert "Parameter 'b'" in split_output[2]
oneliner = ("Parameters([('a', <Parameter 'a', value=10.0, "
"bounds=[-100.0:100.0], brute_step=5.0>), ('b', <Parameter "
"'b', value=20.0, bounds=[-250.0:250.0], expr='2.0*a', "
"brute_step=25.0>)])")
assert output_oneline == oneliner
def test_parameters_pretty_print(parameters, capsys):
"""Test the pretty_print method."""
pars, _, _ = parameters
# oneliner
pars.pretty_print(oneline=True)
captured = capsys.readouterr()
oneliner = ("Parameters([('a', <Parameter 'a', value=10.0, "
"bounds=[-100.0:100.0], brute_step=5.0>), ('b', <Parameter "
"'b', value=20.0, bounds=[-250.0:250.0], expr='2.0*a', "
"brute_step=25.0>)])")
assert oneliner in captured.out
# default
pars.pretty_print()
captured = capsys.readouterr()
captured_split = captured.out.split('\n')
assert len(captured_split) == 4
header = ('Name Value Min Max Stderr Vary '
'Expr Brute_Step')
assert captured_split[0] == header
# specify columnwidth
pars.pretty_print(colwidth=12)
captured = capsys.readouterr()
captured_split = captured.out.split('\n')
header = ('Name Value Min Max Stderr '
' Vary Expr Brute_Step')
assert captured_split[0] == header
# specify columns
pars['a'].stderr = 0.01
pars.pretty_print(columns=['value', 'min', 'max', 'stderr'])
captured = capsys.readouterr()
captured_split = captured.out.split('\n')
assert captured_split[0] == 'Name Value Min Max Stderr'
assert captured_split[1] == 'a 10 -100 100 0.01'
assert captured_split[2] == 'b 20 -250 250 None'
# specify fmt
pars.pretty_print(fmt='e', columns=['value', 'min', 'max'])
captured = capsys.readouterr()
captured_split = captured.out.split('\n')
assert captured_split[0] == 'Name Value Min Max'
assert captured_split[1] == 'a 1.0000e+01 -1.0000e+02 1.0000e+02'
assert captured_split[2] == 'b 2.0000e+01 -2.5000e+02 2.5000e+02'
# specify precision
pars.pretty_print(precision=2, fmt='e', columns=['value', 'min', 'max'])
captured = capsys.readouterr()
captured_split = captured.out.split('\n')
assert captured_split[0] == 'Name Value Min Max'
assert captured_split[1] == 'a 1.00e+01 -1.00e+02 1.00e+02'
assert captured_split[2] == 'b 2.00e+01 -2.50e+02 2.50e+02'
def test_parameters__repr_html_(parameters):
"""Test _repr_html method to generate HTML table for Parameters class."""
pars, _, _ = parameters
repr_html = pars._repr_html_()
assert isinstance(repr_html, str)
assert '<table class="jp-toc-ignore"><caption>Parameters</caption>' in repr_html
def test_parameters_add():
"""Tests for adding a Parameter to the Parameters class."""
pars = lmfit.Parameters()
pars_from_par = lmfit.Parameters()
pars.add('a')
exp_attr_values_A = ('a', -np.inf, True, -np.inf, np.inf, None, None, None)
assert_parameter_attributes(pars['a'], exp_attr_values_A)
pars_from_par.add(lmfit.Parameter('a'))
assert pars_from_par == pars
pars.add('b', value=1, vary=False, min=-5.0, max=5.0, brute_step=0.1)
exp_attr_values_B = ('b', 1.0, False, -5.0, 5.0, None, 0.1, None)
assert_parameter_attributes(pars['b'], exp_attr_values_B)
pars_from_par.add(lmfit.Parameter('b', value=1, vary=False, min=-5.0,
max=5.0, brute_step=0.1))
assert pars_from_par == pars
def test_add_params_expr_outoforder():
"""Regression test for GitHub Issue 560."""
params1 = lmfit.Parameters()
params1.add("a", value=1.0)
params2 = lmfit.Parameters()
params2.add("b", value=1.0)
params2.add("c", value=2.0)
params2['b'].expr = 'c/2'
params = params1 + params2
assert 'b' in params
assert_allclose(params['b'].value, 1.0)
def test_parameters_add_many():
"""Tests for add_many method."""
a = lmfit.Parameter('a', 1)
b = lmfit.Parameter('b', 2)
par = lmfit.Parameters()
par.add_many(a, b)
par_with_tuples = lmfit.Parameters()
par_with_tuples.add_many(('a', 1), ('b', 2))
assert list(par.keys()) == ['a', 'b']
assert par == par_with_tuples
def test_parameters_valuesdict(parameters):
"""Test for valuesdict method."""
pars, _, _ = parameters
vals_dict = pars.valuesdict()
assert isinstance(vals_dict, dict)
assert_allclose(vals_dict['a'], pars['a'].value)
assert_allclose(vals_dict['b'], pars['b'].value)
def test_dumps_loads_parameters(parameters):
"""Test for dumps and loads methods for a Parameters class."""
pars, _, _ = parameters
dumps = pars.dumps()
assert isinstance(dumps, str)
newpars = lmfit.Parameters().loads(dumps)
assert newpars == pars
newpars['a'].value = 100.0
assert_allclose(newpars['b'].value, 200.0)
def test_dump_load_parameters(parameters):
"""Test for dump and load methods for a Parameters class."""
pars, _, _ = parameters
with open('parameters.sav', 'w') as outfile:
pars.dump(outfile)
with open('parameters.sav') as infile:
newpars = pars.load(infile)
assert newpars == pars
newpars['a'].value = 100.0
assert_allclose(newpars['b'].value, 200.0)
def test_dumps_loads_parameters_usersyms():
"""Test for dumps/loads methods for a Parameters class with usersyms."""
def half(x):
return 0.5*x
pars = lmfit.Parameters(usersyms={"half": half, 'my_func': np.sqrt})
pars.add(lmfit.Parameter(name='a', value=9.0, min=-100.0, max=100.0))
pars.add(lmfit.Parameter(name='b', value=100.0, min=-250.0, max=250.0))
pars.add("c", expr="half(b) + my_func(a)")
dumps = pars.dumps()
assert isinstance(dumps, str)
assert '"half": {' in dumps
assert '"my_func": {' in dumps
newpars = lmfit.Parameters().loads(dumps)
assert 'half' in newpars._asteval.symtable
assert 'my_func' in newpars._asteval.symtable
assert_allclose(newpars['a'].value, 9.0)
assert_allclose(newpars['b'].value, 100.0)
# within the py.test environment the encoding of the function 'half' does
# not work correctly as it is changed from <function half at 0x?????????>"
# to "<function test_dumps_loads_parameters_usersyms.<locals>.half at 0x?????????>
# This result in the "importer" to be set to None and the final "decode4js"
# does not do the correct thing.
#
# Of note, this is only an issue within the py.test framework and it DOES
# work correctly in a normal Python interpreter. Also, it isn't an issue
# when DILL is used, so in that case the two asserts below will pass.
assert newpars == pars
assert_allclose(newpars['c'].value, 53.0)
def test_parameters_expr_and_constraints():
"""Regression tests for GitHub Issue #265. Test that parameters are re-
evaluated if they have bounds and expr.
"""
p = lmfit.Parameters()
p.add(lmfit.Parameter('a', 10, True))
p.add(lmfit.Parameter('b', 10, True, 0, 20))
assert_allclose(p['b'].min, 0)
assert_allclose(p['b'].max, 20)
p['a'].expr = '2 * b'
assert_allclose(p['a'].value, 20)
p['b'].value = 15
assert_allclose(p['b'].value, 15)
assert_allclose(p['a'].value, 30)
p['b'].value = 30
assert_allclose(p['b'].value, 20)
assert_allclose(p['a'].value, 40)
def test_parameters_usersyms():
"""Test for passing usersyms to Parameters()."""
def myfun(x):
return x**3
params = lmfit.Parameters(usersyms={"myfun": myfun})
params.add("a", value=2.3)
params.add("b", expr="myfun(a)")
np.random.seed(2020)
xx = np.linspace(0, 1, 10)
yy = 3 * xx + np.random.normal(scale=0.002, size=xx.size)
model = lmfit.Model(lambda x, a: a * x)
result = model.fit(yy, params=params, x=xx)
assert_allclose(result.params['a'].value, 3.0, rtol=1e-3)
assert (result.nfev > 3 and result.nfev < 300)
def test_parameters_expr_with_bounds():
"""Test Parameters using an expression with bounds, without value."""
pars = lmfit.Parameters()
pars.add('c1', value=0.2)
pars.add('c2', value=0.2)
pars.add('c3', value=0.2)
pars.add('csum', value=0.8)
# this should not raise TypeError:
pars.add('c4', expr='csum-c1-c2-c3', min=0, max=1)
assert_allclose(pars['c4'].value, 0.2)
def test_invalid_expr_exceptions():
"""Regression test for GitHub Issue #486: check that an exception is
raised for invalid expressions.
"""
p1 = lmfit.Parameters()
p1.add('t', 2.0, min=0.0, max=5.0)
p1.add('x', 10.0)
with pytest.raises(SyntaxError):
p1.add('y', expr='x*t + sqrt(t)/')
assert len(p1['y']._expr_eval.error) > 0
p1.add('y', expr='x*t + sqrt(t)/3.0')
p1['y'].set(expr='x*3.0 + t**2')
assert 'x*3' in p1['y'].expr
assert len(p1['y']._expr_eval.error) == 0
with pytest.raises(SyntaxError):
p1['y'].set(expr='t+')
assert len(p1['y']._expr_eval.error) > 0
assert_allclose(p1['y'].value, 34.0)
def test_create_params():
"""Tests for create_params() function."""
pars1 = lmfit.create_params(a=8, b=9,
c=dict(value=3, min=0, max=10),
d=dict(expr='a+b/c'),
e=dict(value=10000, brute_step=4))
assert pars1['a'].value == 8
assert pars1['b'].value == 9
assert pars1['c'].value == 3
assert pars1['c'].min == 0
assert pars1['c'].max == 10
assert pars1['d'].expr == 'a+b/c'
assert pars1['d'].value == 11
assert pars1['e'].value == 10000
assert pars1['e'].brute_step == 4
def test_unset_constrained_param():
"""test 'unsetting' a constrained parameter by
just setting `param.vary = True`
"""
data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..',
'examples', 'test_peak.dat'))
x = data[:, 0]
y = data[:, 1]
# initial fit
mod = VoigtModel()
params = mod.guess(y, x=x)
out1 = mod.fit(y, params, x=x)
assert out1.nvarys == 3
assert out1.chisqr < 20.0
# now just gamma to vary
params['gamma'].vary = True
out2 = mod.fit(y, params, x=x)
assert out2.nvarys == 4
assert out2.chisqr < out1.chisqr
assert out2.rsquared > out1.rsquared
assert out2.params['gamma'].correl['sigma'] < -0.6
def test_parameters_add_variants():
"""
setting vairiations for Parameters.add()
"""
pars = lmfit.Parameters()
par1 = lmfit.Parameter('a', value=3, min=0)
pars.add(par1)
par2 = lmfit.Parameter('b', value=7, min=1)
pars.add('bprime', par2)
par3 = lmfit.Parameter('c', value=9, user_data={'form': 'square'})
pars.add('c', par3)
pars.add('c1', par3, min=1)
assert pars['a'].value == 3
assert pars['bprime'].value == 7
assert pars['bprime'].min == 1
assert pars['bprime'].name == 'bprime'
assert pars['c'].value == 9
assert pars['c'].user_data == {'form': 'square'}
assert pars['c1'].value == 9
assert pars['c1'].min == 1
assert pars['c1'].user_data == {'form': 'square'}
assert (pars['c1'] is not pars['c'])
|