File: test_parameters.py

package info (click to toggle)
lmfit-py 1.3.3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,332 kB
  • sloc: python: 13,071; makefile: 130; sh: 30
file content (664 lines) | stat: -rw-r--r-- 22,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
"""Tests for the Parameters class."""

from copy import copy, deepcopy
import os
import pickle

import numpy as np
from numpy.testing import assert_allclose
import pytest

import lmfit
from lmfit.models import VoigtModel


@pytest.fixture
def parameters():
    """Initialize a Parameters class for tests."""
    pars = lmfit.Parameters()
    pars.add(lmfit.Parameter(name='a', value=10.0, vary=True, min=-100.0,
                             max=100.0, expr=None, brute_step=5.0,
                             user_data=1))
    pars.add(lmfit.Parameter(name='b', value=0.0, vary=True, min=-250.0,
                             max=250.0, expr="2.0*a", brute_step=25.0,
                             user_data={'test': 123}))
    exp_attr_values_A = ('a', 10.0, True, -100.0, 100.0, None, 5.0, 1)
    exp_attr_values_B = ('b', 20.0, False, -250.0, 250.0, "2.0*a", 25.0, {'test': 123})
    assert_parameter_attributes(pars['a'], exp_attr_values_A)
    assert_parameter_attributes(pars['b'], exp_attr_values_B)
    return pars, exp_attr_values_A, exp_attr_values_B


def assert_parameter_attributes(par, expected):
    """Assert that parameter attributes have the expected values."""
    par_attr_values = (par.name, par._val, par.vary, par.min, par.max,
                       par._expr, par.brute_step, par.user_data)
    assert par_attr_values == expected


def test_check_ast_errors():
    """Assert that an exception is raised upon AST errors."""
    pars = lmfit.Parameters()
    msg = "name 'par2' is not defined"
    with pytest.raises(NameError, match=msg):
        pars.add('par1', expr='2.0*par2')


def test_parameters_init_with_usersyms():
    """Test for initialization of the Parameters class with usersyms."""
    pars = lmfit.Parameters(usersyms={'test': np.sin})
    assert 'test' in pars._asteval.symtable


def test_parameters_copy(parameters):
    """Tests for copying a Parameters class; all use the __deepcopy__ method."""
    pars, exp_attr_values_A, exp_attr_values_B = parameters

    copy_pars = copy(pars)
    pars_copy = pars.copy()
    pars__copy__ = pars.__copy__()

    # modifying the original parameters should not modify the copies
    pars['a'].set(value=100)
    pars['b'].user_data['test'] = 456

    for copied in [copy_pars, pars_copy, pars__copy__]:
        assert isinstance(copied, lmfit.Parameters)
        assert copied != pars
        assert copied._asteval is not None
        assert copied._asteval.symtable is not None
        assert_parameter_attributes(copied['a'], exp_attr_values_A)
        assert_parameter_attributes(copied['b'], exp_attr_values_B)


def test_parameters_deepcopy(parameters):
    """Tests for deepcopy of a Parameters class."""
    pars, _, _ = parameters

    deepcopy_pars = deepcopy(pars)
    assert isinstance(deepcopy_pars, lmfit.Parameters)
    assert deepcopy_pars == pars

    # check that we can add a symbol to the interpreter
    pars['b'].expr = 'sin(1)'
    pars['b'].value = 10
    assert_allclose(pars['b'].value, np.sin(1))
    assert_allclose(pars._asteval.symtable['b'], np.sin(1))

    # check that the symbols in the interpreter are still the same after
    # deepcopying
    pars, exp_attr_values_A, exp_attr_values_B = parameters
    deepcopy_pars = deepcopy(pars)

    unique_symbols_pars = pars._asteval.user_defined_symbols()
    unique_symbols_copied = deepcopy_pars._asteval.user_defined_symbols()
    assert unique_symbols_copied == unique_symbols_pars

    for unique_symbol in unique_symbols_copied:
        if pars._asteval.symtable[unique_symbol] is not np.nan:
            assert (pars._asteval.symtable[unique_symbol] ==
                    deepcopy_pars._asteval.symtable[unique_symbol])


def test_parameters_deepcopy_subclass():
    """Test that a subclass of parameters is preserved when performing a deepcopy"""
    class ParametersSubclass(lmfit.Parameters):
        pass

    parameters = ParametersSubclass()
    assert isinstance(parameters, ParametersSubclass)

    parameterscopy = deepcopy(parameters)
    assert isinstance(parameterscopy, ParametersSubclass)


def test_parameters_update(parameters):
    """Tests for updating a Parameters class."""
    pars, exp_attr_values_A, exp_attr_values_B = parameters

    msg = r"'test' is not a Parameters object"
    with pytest.raises(ValueError, match=msg):
        pars.update('test')

    pars2 = lmfit.Parameters()
    pars2.add(lmfit.Parameter(name='c', value=7.0, vary=True, min=-70.0,
                              max=70.0, expr=None, brute_step=0.7,
                              user_data=7))
    exp_attr_values_C = ('c', 7.0, True, -70.0, 70.0, None, 0.7, 7)

    pars_updated = pars.update(pars2)

    assert_parameter_attributes(pars_updated['a'], exp_attr_values_A)
    assert_parameter_attributes(pars_updated['b'], exp_attr_values_B)
    assert_parameter_attributes(pars_updated['c'], exp_attr_values_C)


def test_parameters__setitem__(parameters):
    """Tests for __setitem__ method of a Parameters class."""
    pars, _, exp_attr_values_B = parameters

    msg = r"'10' is not a valid Parameters name"
    with pytest.raises(KeyError, match=msg):
        pars.__setitem__('10', None)

    msg = r"'not_a_parameter' is not a Parameter"
    with pytest.raises(ValueError, match=msg):
        pars.__setitem__('a', 'not_a_parameter')

    par = lmfit.Parameter('b', value=10, min=-25.0, brute_step=1)
    pars.__setitem__('b', par)

    exp_attr_values_B = ('b', 10, True, -25.0, np.inf, None, 1, None)
    assert_parameter_attributes(pars['b'], exp_attr_values_B)


def test_parameters__add__(parameters):
    """Test the __add__ magic method."""
    pars, exp_attr_values_A, exp_attr_values_B = parameters

    msg = r"'other' is not a Parameters object"
    with pytest.raises(ValueError, match=msg):
        _ = pars + 'other'

    pars2 = lmfit.Parameters()
    pars2.add_many(('c', 1., True, None, None, None),
                   ('d', 2., True, None, None, None))
    exp_attr_values_C = ('c', 1, True, -np.inf, np.inf, None, None, None)
    exp_attr_values_D = ('d', 2, True, -np.inf, np.inf, None, None, None)

    pars_added = pars + pars2

    assert_parameter_attributes(pars_added['a'], exp_attr_values_A)
    assert_parameter_attributes(pars_added['b'], exp_attr_values_B)
    assert_parameter_attributes(pars_added['c'], exp_attr_values_C)
    assert_parameter_attributes(pars_added['d'], exp_attr_values_D)


def test_parameters__iadd__(parameters):
    """Test the __iadd__ magic method."""
    pars, exp_attr_values_A, exp_attr_values_B = parameters

    msg = r"'other' is not a Parameters object"
    with pytest.raises(ValueError, match=msg):
        pars += 'other'

    pars2 = lmfit.Parameters()
    pars2.add_many(('c', 1., True, None, None, None),
                   ('d', 2., True, None, None, None))
    exp_attr_values_C = ('c', 1, True, -np.inf, np.inf, None, None, None)
    exp_attr_values_D = ('d', 2, True, -np.inf, np.inf, None, None, None)

    pars += pars2

    assert_parameter_attributes(pars['a'], exp_attr_values_A)
    assert_parameter_attributes(pars['b'], exp_attr_values_B)
    assert_parameter_attributes(pars['c'], exp_attr_values_C)
    assert_parameter_attributes(pars['d'], exp_attr_values_D)


def test_parameters_add_with_symtable():
    """Regression test for GitHub Issue 607."""
    pars1 = lmfit.Parameters()
    pars1.add('a', value=1.0)

    def half(x):
        return 0.5*x

    pars2 = lmfit.Parameters(usersyms={"half": half})
    pars2.add("b", value=3.0)
    pars2.add("c", expr="half(b)")

    params = pars1 + pars2
    assert_allclose(params['c'].value, 1.5)

    params = pars2 + pars1
    assert_allclose(params['c'].value, 1.5)

    params = deepcopy(pars1)
    params.update(pars2)
    assert_allclose(params['c'].value, 1.5)

    pars1 += pars2
    assert_allclose(params['c'].value, 1.5)


def test_parameters__array__(parameters):
    """Test the __array__ magic method."""
    pars, _, _ = parameters

    assert_allclose(np.asarray(pars), np.asarray([10.0, 20.0]))


def test_parameters__reduce__(parameters):
    """Test the __reduce__ magic method."""
    pars, _, _ = parameters
    reduced = pars.__reduce__()

    assert isinstance(reduced[2], dict)
    assert 'unique_symbols' in reduced[2].keys()
    assert reduced[2]['unique_symbols']['b'] == 20
    assert 'params' in reduced[2].keys()
    assert isinstance(reduced[2]['params'][0], lmfit.Parameter)


def test_parameters__setstate__(parameters):
    """Test the __setstate__ magic method."""
    pars, exp_attr_values_A, exp_attr_values_B = parameters
    reduced = pars.__reduce__()

    pars_setstate = lmfit.Parameters()
    pars_setstate.__setstate__(reduced[2])

    assert isinstance(pars_setstate, lmfit.Parameters)
    assert_parameter_attributes(pars_setstate['a'], exp_attr_values_A)
    assert_parameter_attributes(pars_setstate['b'], exp_attr_values_B)


def test_pickle_parameters():
    """Test that we can pickle a Parameters object."""
    p = lmfit.Parameters()
    p.add('a', 10, True, 0, 100)
    p.add('b', 10, True, 0, 100, 'a * sin(1)')
    p.update_constraints()
    p._asteval.symtable['abc'] = '2 * 3.142'

    pkl = pickle.dumps(p, -1)
    q = pickle.loads(pkl)

    q.update_constraints()
    assert p == q
    assert p is not q

    # now test if the asteval machinery survived
    assert q._asteval.symtable['abc'] == '2 * 3.142'

    # check that unpickling of Parameters is not affected by expr that
    # refer to Parameter that are added later on. In the following
    # example var_0.expr refers to var_1, which is a Parameter later
    # on in the Parameters dictionary.
    p = lmfit.Parameters()
    p.add('var_0', value=1)
    p.add('var_1', value=2)
    p['var_0'].expr = 'var_1'
    pkl = pickle.dumps(p)
    q = pickle.loads(pkl)


def test_parameters_eval(parameters):
    """Test the eval method."""
    pars, _, _ = parameters
    evaluated = pars.eval('10.0*a+b')
    assert_allclose(evaluated, 120)

    # check that eval() works with usersyms and parameter values
    def myfun(x):
        return 2.0 * x

    pars2 = lmfit.Parameters(usersyms={"myfun": myfun})
    pars2.add('a', value=4.0)
    pars2.add('b', value=3.0)
    assert_allclose(pars2.eval('myfun(2.0) * a'), 16)
    assert_allclose(pars2.eval('b / myfun(3.0)'), 0.5)


def test_parameters_pretty_repr(parameters):
    """Test the pretty_repr method."""
    pars, _, _ = parameters
    output = pars.pretty_repr()
    output_oneline = pars.pretty_repr(oneline=True)

    split_output = output.split('\n')
    assert len(split_output) == 5
    assert 'Parameters' in split_output[0]
    assert "Parameter 'a'" in split_output[1]
    assert "Parameter 'b'" in split_output[2]

    oneliner = ("Parameters([('a', <Parameter 'a', value=10.0, "
                "bounds=[-100.0:100.0], brute_step=5.0>), ('b', <Parameter "
                "'b', value=20.0, bounds=[-250.0:250.0], expr='2.0*a', "
                "brute_step=25.0>)])")
    assert output_oneline == oneliner


def test_parameters_pretty_print(parameters, capsys):
    """Test the pretty_print method."""
    pars, _, _ = parameters

    # oneliner
    pars.pretty_print(oneline=True)
    captured = capsys.readouterr()
    oneliner = ("Parameters([('a', <Parameter 'a', value=10.0, "
                "bounds=[-100.0:100.0], brute_step=5.0>), ('b', <Parameter "
                "'b', value=20.0, bounds=[-250.0:250.0], expr='2.0*a', "
                "brute_step=25.0>)])")
    assert oneliner in captured.out

    # default
    pars.pretty_print()
    captured = capsys.readouterr()
    captured_split = captured.out.split('\n')
    assert len(captured_split) == 4
    header = ('Name     Value      Min      Max   Stderr     Vary     '
              'Expr Brute_Step')
    assert captured_split[0] == header

    # specify columnwidth
    pars.pretty_print(colwidth=12)
    captured = capsys.readouterr()
    captured_split = captured.out.split('\n')
    header = ('Name         Value          Min          Max       Stderr     '
              '    Vary         Expr   Brute_Step')
    assert captured_split[0] == header

    # specify columns
    pars['a'].stderr = 0.01
    pars.pretty_print(columns=['value', 'min', 'max', 'stderr'])
    captured = capsys.readouterr()
    captured_split = captured.out.split('\n')
    assert captured_split[0] == 'Name     Value      Min      Max   Stderr'
    assert captured_split[1] == 'a        10     -100      100     0.01'
    assert captured_split[2] == 'b        20     -250      250     None'

    # specify fmt
    pars.pretty_print(fmt='e', columns=['value', 'min', 'max'])
    captured = capsys.readouterr()
    captured_split = captured.out.split('\n')
    assert captured_split[0] == 'Name     Value      Min      Max'
    assert captured_split[1] == 'a  1.0000e+01 -1.0000e+02 1.0000e+02'
    assert captured_split[2] == 'b  2.0000e+01 -2.5000e+02 2.5000e+02'

    # specify precision
    pars.pretty_print(precision=2, fmt='e', columns=['value', 'min', 'max'])
    captured = capsys.readouterr()
    captured_split = captured.out.split('\n')
    assert captured_split[0] == 'Name     Value      Min      Max'
    assert captured_split[1] == 'a  1.00e+01 -1.00e+02 1.00e+02'
    assert captured_split[2] == 'b  2.00e+01 -2.50e+02 2.50e+02'


def test_parameters__repr_html_(parameters):
    """Test _repr_html method to generate HTML table for Parameters class."""
    pars, _, _ = parameters
    repr_html = pars._repr_html_()

    assert isinstance(repr_html, str)
    assert '<table class="jp-toc-ignore"><caption>Parameters</caption>' in repr_html


def test_parameters_add():
    """Tests for adding a Parameter to the Parameters class."""
    pars = lmfit.Parameters()
    pars_from_par = lmfit.Parameters()

    pars.add('a')
    exp_attr_values_A = ('a', -np.inf, True, -np.inf, np.inf, None, None, None)
    assert_parameter_attributes(pars['a'], exp_attr_values_A)

    pars_from_par.add(lmfit.Parameter('a'))
    assert pars_from_par == pars

    pars.add('b', value=1, vary=False, min=-5.0, max=5.0, brute_step=0.1)
    exp_attr_values_B = ('b', 1.0, False, -5.0, 5.0, None, 0.1, None)
    assert_parameter_attributes(pars['b'], exp_attr_values_B)

    pars_from_par.add(lmfit.Parameter('b', value=1, vary=False, min=-5.0,
                                      max=5.0, brute_step=0.1))
    assert pars_from_par == pars


def test_add_params_expr_outoforder():
    """Regression test for GitHub Issue 560."""
    params1 = lmfit.Parameters()
    params1.add("a", value=1.0)

    params2 = lmfit.Parameters()
    params2.add("b", value=1.0)
    params2.add("c", value=2.0)
    params2['b'].expr = 'c/2'

    params = params1 + params2
    assert 'b' in params
    assert_allclose(params['b'].value, 1.0)


def test_parameters_add_many():
    """Tests for add_many method."""
    a = lmfit.Parameter('a', 1)
    b = lmfit.Parameter('b', 2)

    par = lmfit.Parameters()
    par.add_many(a, b)

    par_with_tuples = lmfit.Parameters()
    par_with_tuples.add_many(('a', 1), ('b', 2))

    assert list(par.keys()) == ['a', 'b']
    assert par == par_with_tuples


def test_parameters_valuesdict(parameters):
    """Test for valuesdict method."""
    pars, _, _ = parameters
    vals_dict = pars.valuesdict()

    assert isinstance(vals_dict, dict)
    assert_allclose(vals_dict['a'], pars['a'].value)
    assert_allclose(vals_dict['b'], pars['b'].value)


def test_dumps_loads_parameters(parameters):
    """Test for dumps and loads methods for a Parameters class."""
    pars, _, _ = parameters

    dumps = pars.dumps()
    assert isinstance(dumps, str)
    newpars = lmfit.Parameters().loads(dumps)
    assert newpars == pars

    newpars['a'].value = 100.0
    assert_allclose(newpars['b'].value, 200.0)


def test_dump_load_parameters(parameters):
    """Test for dump and load methods for a Parameters class."""
    pars, _, _ = parameters

    with open('parameters.sav', 'w') as outfile:
        pars.dump(outfile)

    with open('parameters.sav') as infile:
        newpars = pars.load(infile)

    assert newpars == pars
    newpars['a'].value = 100.0
    assert_allclose(newpars['b'].value, 200.0)


def test_dumps_loads_parameters_usersyms():
    """Test for dumps/loads methods for a Parameters class with usersyms."""
    def half(x):
        return 0.5*x

    pars = lmfit.Parameters(usersyms={"half": half, 'my_func': np.sqrt})
    pars.add(lmfit.Parameter(name='a', value=9.0, min=-100.0, max=100.0))
    pars.add(lmfit.Parameter(name='b', value=100.0, min=-250.0, max=250.0))
    pars.add("c", expr="half(b) + my_func(a)")

    dumps = pars.dumps()
    assert isinstance(dumps, str)
    assert '"half": {' in dumps
    assert '"my_func": {' in dumps

    newpars = lmfit.Parameters().loads(dumps)
    assert 'half' in newpars._asteval.symtable
    assert 'my_func' in newpars._asteval.symtable
    assert_allclose(newpars['a'].value, 9.0)
    assert_allclose(newpars['b'].value, 100.0)

    # within the py.test environment the encoding of the function 'half' does
    # not work correctly as it is changed from <function half at 0x?????????>"
    # to "<function test_dumps_loads_parameters_usersyms.<locals>.half at 0x?????????>
    # This result in the "importer" to be set to None and the final "decode4js"
    # does not do the correct thing.
    #
    # Of note, this is only an issue within the py.test framework and it DOES
    # work correctly in a normal Python interpreter. Also, it isn't an issue
    # when DILL is used, so in that case the two asserts below will pass.
    assert newpars == pars
    assert_allclose(newpars['c'].value, 53.0)


def test_parameters_expr_and_constraints():
    """Regression tests for GitHub Issue #265. Test that parameters are re-
    evaluated if they have bounds and expr.

    """
    p = lmfit.Parameters()
    p.add(lmfit.Parameter('a', 10, True))
    p.add(lmfit.Parameter('b', 10, True, 0, 20))

    assert_allclose(p['b'].min, 0)
    assert_allclose(p['b'].max, 20)

    p['a'].expr = '2 * b'
    assert_allclose(p['a'].value, 20)

    p['b'].value = 15
    assert_allclose(p['b'].value, 15)
    assert_allclose(p['a'].value, 30)

    p['b'].value = 30
    assert_allclose(p['b'].value, 20)
    assert_allclose(p['a'].value, 40)


def test_parameters_usersyms():
    """Test for passing usersyms to Parameters()."""
    def myfun(x):
        return x**3

    params = lmfit.Parameters(usersyms={"myfun": myfun})
    params.add("a", value=2.3)
    params.add("b", expr="myfun(a)")

    np.random.seed(2020)
    xx = np.linspace(0, 1, 10)
    yy = 3 * xx + np.random.normal(scale=0.002, size=xx.size)

    model = lmfit.Model(lambda x, a: a * x)
    result = model.fit(yy, params=params, x=xx)
    assert_allclose(result.params['a'].value, 3.0, rtol=1e-3)
    assert (result.nfev > 3 and result.nfev < 300)


def test_parameters_expr_with_bounds():
    """Test Parameters using an expression with bounds, without value."""
    pars = lmfit.Parameters()
    pars.add('c1', value=0.2)
    pars.add('c2', value=0.2)
    pars.add('c3', value=0.2)
    pars.add('csum', value=0.8)

    # this should not raise TypeError:
    pars.add('c4', expr='csum-c1-c2-c3', min=0, max=1)
    assert_allclose(pars['c4'].value, 0.2)


def test_invalid_expr_exceptions():
    """Regression test for GitHub Issue #486: check that an exception is
    raised for invalid expressions.

    """
    p1 = lmfit.Parameters()
    p1.add('t', 2.0, min=0.0, max=5.0)
    p1.add('x', 10.0)

    with pytest.raises(SyntaxError):
        p1.add('y', expr='x*t + sqrt(t)/')
    assert len(p1['y']._expr_eval.error) > 0

    p1.add('y', expr='x*t + sqrt(t)/3.0')
    p1['y'].set(expr='x*3.0 + t**2')
    assert 'x*3' in p1['y'].expr
    assert len(p1['y']._expr_eval.error) == 0

    with pytest.raises(SyntaxError):
        p1['y'].set(expr='t+')
    assert len(p1['y']._expr_eval.error) > 0
    assert_allclose(p1['y'].value, 34.0)


def test_create_params():
    """Tests for create_params() function."""
    pars1 = lmfit.create_params(a=8, b=9,
                                c=dict(value=3, min=0, max=10),
                                d=dict(expr='a+b/c'),
                                e=dict(value=10000, brute_step=4))

    assert pars1['a'].value == 8
    assert pars1['b'].value == 9
    assert pars1['c'].value == 3
    assert pars1['c'].min == 0
    assert pars1['c'].max == 10
    assert pars1['d'].expr == 'a+b/c'
    assert pars1['d'].value == 11
    assert pars1['e'].value == 10000
    assert pars1['e'].brute_step == 4


def test_unset_constrained_param():
    """test 'unsetting' a constrained parameter by
    just setting `param.vary = True`

    """
    data = np.loadtxt(os.path.join(os.path.dirname(__file__), '..',
                                   'examples', 'test_peak.dat'))
    x = data[:, 0]
    y = data[:, 1]

    # initial fit
    mod = VoigtModel()
    params = mod.guess(y, x=x)
    out1 = mod.fit(y, params, x=x)

    assert out1.nvarys == 3
    assert out1.chisqr < 20.0

    # now just gamma to vary
    params['gamma'].vary = True
    out2 = mod.fit(y, params, x=x)

    assert out2.nvarys == 4
    assert out2.chisqr < out1.chisqr
    assert out2.rsquared > out1.rsquared
    assert out2.params['gamma'].correl['sigma'] < -0.6


def test_parameters_add_variants():
    """
    setting vairiations for Parameters.add()
    """
    pars = lmfit.Parameters()
    par1 = lmfit.Parameter('a', value=3, min=0)
    pars.add(par1)

    par2 = lmfit.Parameter('b', value=7, min=1)
    pars.add('bprime', par2)

    par3 = lmfit.Parameter('c', value=9, user_data={'form': 'square'})
    pars.add('c', par3)
    pars.add('c1', par3, min=1)

    assert pars['a'].value == 3

    assert pars['bprime'].value == 7
    assert pars['bprime'].min == 1
    assert pars['bprime'].name == 'bprime'

    assert pars['c'].value == 9
    assert pars['c'].user_data == {'form': 'square'}
    assert pars['c1'].value == 9

    assert pars['c1'].min == 1
    assert pars['c1'].user_data == {'form': 'square'}
    assert (pars['c1'] is not pars['c'])