1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* vibrating_string.h - model of a vibrating string lifted from pluckedSynth
*
* Copyright (c) 2006-2007 Danny McRae <khjklujn/at/yahoo/com>
*
* This file is part of LMMS - https://lmms.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program (see COPYING); if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301 USA.
*
*/
#ifndef _VIBRATING_STRING_H
#define _VIBRATING_STRING_H
#include <stdio.h>
#include <stdlib.h>
#include "lmms_basics.h"
class vibratingString
{
public:
vibratingString( float _pitch,
float _pick,
float _pickup,
float * impluse,
int _len,
sample_rate_t _sample_rate,
int _oversample,
float _randomize,
float _string_loss,
float _detune,
bool _state );
inline ~vibratingString()
{
delete[] m_outsamp;
delete[] m_impulse;
vibratingString::freeDelayLine( m_fromBridge );
vibratingString::freeDelayLine( m_toBridge );
}
inline sample_t nextSample()
{
sample_t ym0;
sample_t ypM;
for( int i = 0; i < m_oversample; i++)
{
// Output at pickup position
m_outsamp[i] = fromBridgeAccess( m_fromBridge,
m_pickupLoc );
m_outsamp[i] += toBridgeAccess( m_toBridge,
m_pickupLoc );
// Sample traveling into "bridge"
ym0 = toBridgeAccess( m_toBridge, 1 );
// Sample to "nut"
ypM = fromBridgeAccess( m_fromBridge,
m_fromBridge->length - 2 );
// String state update
// Decrement pointer and then update
fromBridgeUpdate( m_fromBridge,
-bridgeReflection( ym0 ) );
// Update and then increment pointer
toBridgeUpdate( m_toBridge, -ypM );
}
return( m_outsamp[m_choice] );
}
private:
struct delayLine
{
sample_t * data;
int length;
sample_t * pointer;
sample_t * end;
} ;
delayLine * m_fromBridge;
delayLine * m_toBridge;
int m_pickupLoc;
int m_oversample;
float m_randomize;
float m_stringLoss;
float * m_impulse;
int m_choice;
float m_state;
sample_t * m_outsamp;
delayLine * initDelayLine( int _len, int _pick );
static void freeDelayLine( delayLine * _dl );
void resample( float *_src, f_cnt_t _src_frames, f_cnt_t _dst_frames );
/* setDelayLine initializes the string with an impulse at the pick
* position unless the impulse is longer than the string, in which
* case the impulse gets truncated. */
inline void setDelayLine( delayLine * _dl,
int _pick,
const float * _values,
int _len,
float _scale,
bool _state )
{
float r;
float offset;
if( not _state )
{
for( int i = 0; i < _pick; i++ )
{
r = static_cast<float>( rand() ) /
RAND_MAX;
offset = ( m_randomize / 2.0f -
m_randomize ) * r;
_dl->data[i] = _scale *
_values[_dl->length - i - 1] +
offset;
}
for( int i = _pick; i < _dl->length; i++ )
{
r = static_cast<float>( rand() ) /
RAND_MAX;
offset = ( m_randomize / 2.0f -
m_randomize ) * r;
_dl->data[i] = _scale *
_values[i - _pick] + offset ;
}
}
else
{
if( _len + _pick > _dl->length )
{
for( int i = _pick; i < _dl->length; i++ )
{
r = static_cast<float>( rand() ) /
RAND_MAX;
offset = ( m_randomize / 2.0f -
m_randomize ) * r;
_dl->data[i] = _scale *
_values[i-_pick] +
offset;
}
}
else
{
for( int i = 0; i < _len; i++ )
{
r = static_cast<float>( rand() ) /
RAND_MAX;
offset = ( m_randomize / 2.0f -
m_randomize ) * r;
_dl->data[i+_pick] = _scale *
_values[i] +
offset;
}
}
}
}
/* toBridgeUpdate(dl, insamp);
* Places "nut-reflected" sample from upper delay-line into
* current lower delay-line pointer position (which represents
* x = 0 position). The pointer is then incremented (i.e. the
* wave travels one sample to the left), turning the previous
* position into an "effective" x = L position for the next
* iteration. */
inline void toBridgeUpdate( delayLine * _dl, sample_t _insamp )
{
register sample_t * ptr = _dl->pointer;
*ptr = _insamp * m_stringLoss;
++ptr;
if( ptr > _dl->end )
{
ptr = _dl->data;
}
_dl->pointer = ptr;
}
/* fromBridgeUpdate(dl, insamp);
* Decrements current upper delay-line pointer position (i.e.
* the wave travels one sample to the right), moving it to the
* "effective" x = 0 position for the next iteration. The
* "bridge-reflected" sample from lower delay-line is then placed
* into this position. */
inline void fromBridgeUpdate( delayLine * _dl,
sample_t _insamp )
{
register sample_t * ptr = _dl->pointer;
--ptr;
if( ptr < _dl->data )
{
ptr = _dl->end;
}
*ptr = _insamp * m_stringLoss;
_dl->pointer = ptr;
}
/* dlAccess(dl, position);
* Returns sample "position" samples into delay-line's past.
* Position "0" points to the most recently inserted sample. */
static inline sample_t dlAccess( delayLine * _dl, int _position )
{
sample_t * outpos = _dl->pointer + _position;
while( outpos < _dl->data )
{
outpos += _dl->length;
}
while( outpos > _dl->end )
{
outpos -= _dl->length;
}
return( *outpos );
}
/*
* Right-going delay line:
* -->---->---->---
* x=0
* (pointer)
* Left-going delay line:
* --<----<----<---
* x=0
* (pointer)
*/
/* fromBridgeAccess(dl, position);
* Returns spatial sample at position "position", where position zero
* is equal to the current upper delay-line pointer position (x = 0).
* In a right-going delay-line, position increases to the right, and
* delay increases to the right => left = past and right = future. */
static inline sample_t fromBridgeAccess( delayLine * _dl,
int _position )
{
return( dlAccess( _dl, _position ) );
}
/* toBridgeAccess(dl, position);
* Returns spatial sample at position "position", where position zero
* is equal to the current lower delay-line pointer position (x = 0).
* In a left-going delay-line, position increases to the right, and
* delay DEcreases to the right => left = future and right = past. */
static inline sample_t toBridgeAccess( delayLine * _dl, int _position )
{
return( dlAccess( _dl, _position ) );
}
inline sample_t bridgeReflection( sample_t _insamp )
{
return( m_state = ( m_state + _insamp ) * 0.5 );
}
} ;
#endif
|