1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
\name{jocci}
\alias{fyff}
\alias{gmdc}
\alias{ip}
\alias{jocci}
\alias{lhur}
\alias{pw561}
\title{U.S. Macroeconomic Time Series}
\usage{
data(fyff)
data(gmdc)
data(ip)
data(jocci)
data(lhur)
data(pw561)
}
\description{
Several macroeconomic time series from the U.S.
}
\format{
All data sets are multivariate monthly time series from
1959(8) to 1993(12) (except 1993(10) for \code{jocci}) with variables
\describe{
\item{y}{original time series,}
\item{dy}{transformed times series (first differences
or log first differences),}
\item{dy1}{transformed series at lag 1,}
\item{dy2}{transformed series at lag 2,}
\item{dy3}{transformed series at lag 3,}
\item{dy4}{transformed series at lag 4,}
\item{dy5}{transformed series at lag 5,}
\item{dy6}{transformed series at lag 6.}
}
}
\details{
The description from Stock & Watson (1996) for the time series
(with the transformation used):
\describe{
\item{fyff}{interest rate (first differences),}
\item{gmdc}{pce, impl pr defl: pce (1987 = 100) (log first differences),}
\item{ip}{index of industrial production (log first differences),}
\item{jocci}{department of commerce commodity price index (log first differences),}
\item{lhur}{unemployment rate: all workers, 16 years & over (\%, sa) (first differences),}
\item{pw561}{producer price index: crude petroleum (82 = 100, nsa) (log first differences).}
}
Stock & Watson (1996) fitted an AR(6) model to all transformed time series.
}
\source{
Stock & Watson (1996) study the stability of 76 macroeconomic time series, which can be obtained
from Mark W. Watson's homepage \url{http://www.wws.princeton.edu/~mwatson/}.
}
\references{
J.H. Stock & M.W. Watson (1996),
Evidence on Structural Instability in Macroeconomic Time Series Relations.
\emph{Journal of Business & Economic Statistics} \bold{14}, 11--30.
}
\examples{
data(jocci)
dwtest(dy ~ 1, data = jocci)
bgtest(dy ~ 1, data = jocci)
ar6.model <- dy ~ dy1 + dy2 + dy3 + dy4 + dy5 +dy6
bgtest(ar6.model, data = jocci)
var.model <- ~ I(dy1^2) + I(dy2^2) + I(dy3^2) + I(dy4^2) + I(dy5^2) + I(dy6^2)
bptest(ar6.model, var.model, data = jocci)
}
\keyword{datasets}
|