1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Created by Martin on 15/06/2019.
* Adapted from donated nonius code.
*
* Distributed under the Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
// Statistical analysis tools
#if defined(CATCH_CONFIG_ENABLE_BENCHMARKING)
#include "catch_stats.hpp"
#include "../../catch_compiler_capabilities.h"
#include <cassert>
#include <random>
#if defined(CATCH_CONFIG_USE_ASYNC)
#include <future>
#endif
namespace {
double erf_inv(double x) {
// Code accompanying the article "Approximating the erfinv function" in GPU Computing Gems, Volume 2
double w, p;
w = -log((1.0 - x) * (1.0 + x));
if (w < 6.250000) {
w = w - 3.125000;
p = -3.6444120640178196996e-21;
p = -1.685059138182016589e-19 + p * w;
p = 1.2858480715256400167e-18 + p * w;
p = 1.115787767802518096e-17 + p * w;
p = -1.333171662854620906e-16 + p * w;
p = 2.0972767875968561637e-17 + p * w;
p = 6.6376381343583238325e-15 + p * w;
p = -4.0545662729752068639e-14 + p * w;
p = -8.1519341976054721522e-14 + p * w;
p = 2.6335093153082322977e-12 + p * w;
p = -1.2975133253453532498e-11 + p * w;
p = -5.4154120542946279317e-11 + p * w;
p = 1.051212273321532285e-09 + p * w;
p = -4.1126339803469836976e-09 + p * w;
p = -2.9070369957882005086e-08 + p * w;
p = 4.2347877827932403518e-07 + p * w;
p = -1.3654692000834678645e-06 + p * w;
p = -1.3882523362786468719e-05 + p * w;
p = 0.0001867342080340571352 + p * w;
p = -0.00074070253416626697512 + p * w;
p = -0.0060336708714301490533 + p * w;
p = 0.24015818242558961693 + p * w;
p = 1.6536545626831027356 + p * w;
} else if (w < 16.000000) {
w = sqrt(w) - 3.250000;
p = 2.2137376921775787049e-09;
p = 9.0756561938885390979e-08 + p * w;
p = -2.7517406297064545428e-07 + p * w;
p = 1.8239629214389227755e-08 + p * w;
p = 1.5027403968909827627e-06 + p * w;
p = -4.013867526981545969e-06 + p * w;
p = 2.9234449089955446044e-06 + p * w;
p = 1.2475304481671778723e-05 + p * w;
p = -4.7318229009055733981e-05 + p * w;
p = 6.8284851459573175448e-05 + p * w;
p = 2.4031110387097893999e-05 + p * w;
p = -0.0003550375203628474796 + p * w;
p = 0.00095328937973738049703 + p * w;
p = -0.0016882755560235047313 + p * w;
p = 0.0024914420961078508066 + p * w;
p = -0.0037512085075692412107 + p * w;
p = 0.005370914553590063617 + p * w;
p = 1.0052589676941592334 + p * w;
p = 3.0838856104922207635 + p * w;
} else {
w = sqrt(w) - 5.000000;
p = -2.7109920616438573243e-11;
p = -2.5556418169965252055e-10 + p * w;
p = 1.5076572693500548083e-09 + p * w;
p = -3.7894654401267369937e-09 + p * w;
p = 7.6157012080783393804e-09 + p * w;
p = -1.4960026627149240478e-08 + p * w;
p = 2.9147953450901080826e-08 + p * w;
p = -6.7711997758452339498e-08 + p * w;
p = 2.2900482228026654717e-07 + p * w;
p = -9.9298272942317002539e-07 + p * w;
p = 4.5260625972231537039e-06 + p * w;
p = -1.9681778105531670567e-05 + p * w;
p = 7.5995277030017761139e-05 + p * w;
p = -0.00021503011930044477347 + p * w;
p = -0.00013871931833623122026 + p * w;
p = 1.0103004648645343977 + p * w;
p = 4.8499064014085844221 + p * w;
}
return p * x;
}
double standard_deviation(std::vector<double>::iterator first, std::vector<double>::iterator last) {
auto m = Catch::Benchmark::Detail::mean(first, last);
double variance = std::accumulate(first, last, 0., [m](double a, double b) {
double diff = b - m;
return a + diff * diff;
}) / (last - first);
return std::sqrt(variance);
}
}
namespace Catch {
namespace Benchmark {
namespace Detail {
double weighted_average_quantile(int k, int q, std::vector<double>::iterator first, std::vector<double>::iterator last) {
auto count = last - first;
double idx = (count - 1) * k / static_cast<double>(q);
int j = static_cast<int>(idx);
double g = idx - j;
std::nth_element(first, first + j, last);
auto xj = first[j];
if (g == 0) return xj;
auto xj1 = *std::min_element(first + (j + 1), last);
return xj + g * (xj1 - xj);
}
double erfc_inv(double x) {
return erf_inv(1.0 - x);
}
double normal_quantile(double p) {
static const double ROOT_TWO = std::sqrt(2.0);
double result = 0.0;
assert(p >= 0 && p <= 1);
if (p < 0 || p > 1) {
return result;
}
result = -erfc_inv(2.0 * p);
// result *= normal distribution standard deviation (1.0) * sqrt(2)
result *= /*sd * */ ROOT_TWO;
// result += normal disttribution mean (0)
return result;
}
double outlier_variance(Estimate<double> mean, Estimate<double> stddev, int n) {
double sb = stddev.point;
double mn = mean.point / n;
double mg_min = mn / 2.;
double sg = (std::min)(mg_min / 4., sb / std::sqrt(n));
double sg2 = sg * sg;
double sb2 = sb * sb;
auto c_max = [n, mn, sb2, sg2](double x) -> double {
double k = mn - x;
double d = k * k;
double nd = n * d;
double k0 = -n * nd;
double k1 = sb2 - n * sg2 + nd;
double det = k1 * k1 - 4 * sg2 * k0;
return (int)(-2. * k0 / (k1 + std::sqrt(det)));
};
auto var_out = [n, sb2, sg2](double c) {
double nc = n - c;
return (nc / n) * (sb2 - nc * sg2);
};
return (std::min)(var_out(1), var_out((std::min)(c_max(0.), c_max(mg_min)))) / sb2;
}
bootstrap_analysis analyse_samples(double confidence_level, int n_resamples, std::vector<double>::iterator first, std::vector<double>::iterator last) {
CATCH_INTERNAL_START_WARNINGS_SUPPRESSION
CATCH_INTERNAL_SUPPRESS_GLOBALS_WARNINGS
static std::random_device entropy;
CATCH_INTERNAL_STOP_WARNINGS_SUPPRESSION
auto n = static_cast<int>(last - first); // seriously, one can't use integral types without hell in C++
auto mean = &Detail::mean<std::vector<double>::iterator>;
auto stddev = &standard_deviation;
#if defined(CATCH_CONFIG_USE_ASYNC)
auto Estimate = [=](double(*f)(std::vector<double>::iterator, std::vector<double>::iterator)) {
auto seed = entropy();
return std::async(std::launch::async, [=] {
std::mt19937 rng(seed);
auto resampled = resample(rng, n_resamples, first, last, f);
return bootstrap(confidence_level, first, last, resampled, f);
});
};
auto mean_future = Estimate(mean);
auto stddev_future = Estimate(stddev);
auto mean_estimate = mean_future.get();
auto stddev_estimate = stddev_future.get();
#else
auto Estimate = [=](double(*f)(std::vector<double>::iterator, std::vector<double>::iterator)) {
auto seed = entropy();
std::mt19937 rng(seed);
auto resampled = resample(rng, n_resamples, first, last, f);
return bootstrap(confidence_level, first, last, resampled, f);
};
auto mean_estimate = Estimate(mean);
auto stddev_estimate = Estimate(stddev);
#endif // CATCH_USE_ASYNC
double outlier_variance = Detail::outlier_variance(mean_estimate, stddev_estimate, n);
return { mean_estimate, stddev_estimate, outlier_variance };
}
} // namespace Detail
} // namespace Benchmark
} // namespace Catch
#endif // CATCH_CONFIG_ENABLE_BENCHMARKING
|