1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// -*- C++ -*-
// Copyright (c) 2012-2015 Jakob Progsch
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
// Modified for log4cplus, copyright (c) 2014-2015 Václav Zeman.
#ifndef THREAD_POOL_H_7ea1ee6b_4f17_4c09_b76b_3d44e102400c
#define THREAD_POOL_H_7ea1ee6b_4f17_4c09_b76b_3d44e102400c
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <atomic>
#include <functional>
#include <stdexcept>
#include <algorithm>
#include <cassert>
namespace progschj {
class ThreadPool {
public:
explicit ThreadPool(std::size_t threads
= (std::max)(2u, std::thread::hardware_concurrency()));
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<
#if defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703
typename std::invoke_result<F&&, Args&&...>::type
#else
typename std::result_of<F&& (Args&&...)>::type
#endif
>;
void wait_until_empty();
void wait_until_nothing_in_flight();
void set_queue_size_limit(std::size_t limit);
void set_pool_size(std::size_t limit);
~ThreadPool();
private:
void start_worker(std::size_t worker_number,
std::unique_lock<std::mutex> const &lock);
// need to keep track of threads so we can join them
std::vector< std::thread > workers;
// target pool size
std::size_t pool_size;
// the task queue
std::queue< std::function<void()> > tasks;
// queue length limit
std::size_t max_queue_size = 100000;
// stop signal
bool stop = false;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition_producers;
std::condition_variable condition_consumers;
std::mutex in_flight_mutex;
std::condition_variable in_flight_condition;
std::atomic<std::size_t> in_flight;
struct handle_in_flight_decrement
{
ThreadPool & tp;
handle_in_flight_decrement(ThreadPool & tp_)
: tp(tp_)
{ }
~handle_in_flight_decrement()
{
std::size_t prev
= std::atomic_fetch_sub_explicit(&tp.in_flight,
std::size_t(1),
std::memory_order_acq_rel);
if (prev == 1)
{
std::unique_lock<std::mutex> guard(tp.in_flight_mutex);
tp.in_flight_condition.notify_all();
}
}
};
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(std::size_t threads)
: pool_size(threads)
, in_flight(0)
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
for (std::size_t i = 0; i != threads; ++i)
start_worker(i, lock);
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<
#if defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703
typename std::invoke_result<F&&, Args&&...>::type
#else
typename std::result_of<F&& (Args&&...)>::type
#endif
>
{
#if defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703
using return_type = typename std::invoke_result<F&&, Args&&...>::type;
#else
using return_type = typename std::result_of<F&& (Args&&...)>::type;
#endif
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
std::unique_lock<std::mutex> lock(queue_mutex);
if (tasks.size () >= max_queue_size)
// wait for the queue to empty or be stopped
condition_producers.wait(lock,
[this]
{
return tasks.size () < max_queue_size
|| stop;
});
// don't allow enqueueing after stopping the pool
if (stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task](){ (*task)(); });
std::atomic_fetch_add_explicit(&in_flight,
std::size_t(1),
std::memory_order_relaxed);
condition_consumers.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
pool_size = 0;
condition_consumers.notify_all();
condition_producers.notify_all();
condition_consumers.wait(lock, [this]{ return this->workers.empty(); });
assert(in_flight == 0);
}
inline void ThreadPool::wait_until_empty()
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition_producers.wait(lock,
[this]{ return this->tasks.empty(); });
}
inline void ThreadPool::wait_until_nothing_in_flight()
{
std::unique_lock<std::mutex> lock(this->in_flight_mutex);
this->in_flight_condition.wait(lock,
[this]{ return this->in_flight == 0; });
}
inline void ThreadPool::set_queue_size_limit(std::size_t limit)
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
if (stop)
return;
std::size_t const old_limit = max_queue_size;
max_queue_size = (std::max)(limit, std::size_t(1));
if (old_limit < max_queue_size)
condition_producers.notify_all();
}
inline void ThreadPool::set_pool_size(std::size_t limit)
{
if (limit < 1)
limit = 1;
std::unique_lock<std::mutex> lock(this->queue_mutex);
if (stop)
return;
std::size_t const old_size = pool_size;
assert(this->workers.size() >= old_size);
pool_size = limit;
if (pool_size > old_size)
{
// create new worker threads
// it is possible that some of these are still running because
// they have not stopped yet after a pool size reduction, such
// workers will just keep running
for (std::size_t i = old_size; i != pool_size; ++i)
start_worker(i, lock);
}
else if (pool_size < old_size)
// notify all worker threads to start downsizing
this->condition_consumers.notify_all();
}
inline void ThreadPool::start_worker(
std::size_t worker_number, std::unique_lock<std::mutex> const &lock)
{
assert(lock.owns_lock() && lock.mutex() == &this->queue_mutex);
assert(worker_number <= this->workers.size());
auto worker_func =
[this, worker_number]
{
for(;;)
{
std::function<void()> task;
bool notify;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition_consumers.wait(lock,
[this, worker_number]{
return this->stop || !this->tasks.empty()
|| pool_size < worker_number + 1; });
// deal with downsizing of thread pool or shutdown
if ((this->stop && this->tasks.empty())
|| (!this->stop && pool_size < worker_number + 1))
{
// detach this worker, effectively marking it stopped
this->workers[worker_number].detach();
// downsize the workers vector as much as possible
while (this->workers.size() > pool_size
&& !this->workers.back().joinable())
this->workers.pop_back();
// if this is was last worker, notify the destructor
if (this->workers.empty())
this->condition_consumers.notify_all();
return;
}
else if (!this->tasks.empty())
{
task = std::move(this->tasks.front());
this->tasks.pop();
notify = this->tasks.size() + 1 == max_queue_size
|| this->tasks.empty();
}
else
continue;
}
handle_in_flight_decrement guard(*this);
if (notify)
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
condition_producers.notify_all();
}
task();
}
};
if (worker_number < this->workers.size()) {
std::thread & worker = this->workers[worker_number];
// start only if not already running
if (!worker.joinable()) {
worker = std::thread(worker_func);
}
} else
this->workers.push_back(std::thread(worker_func));
}
} // namespace progschj
#endif // THREAD_POOL_H_7ea1ee6b_4f17_4c09_b76b_3d44e102400c
|