1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
# copyright 2002-2021 LOGILAB S.A. (Paris, FRANCE), all rights reserved.
# contact http://www.logilab.fr/ -- mailto:contact@logilab.fr
#
# This file is part of logilab-constraint.
#
# logilab-constraint is free software: you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 2.1 of the License, or (at your
# option) any later version.
#
# logilab-constraint is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
# for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with logilab-constraint. If not, see <http://www.gnu.org/licenses/>.
from logilab.constraint import fd, Repository, Solver
# games found on http://www.websudoku.com/
# I'm not sure how they rate the difficulty of their problems.
easy = [
" 5 27 ",
" 4 79 ",
"1 6 8 35",
"4 32 16 9",
" 5 8 ",
"8 76 95 3",
"73 2 1 6",
" 41 2 ",
" 12 8 ",
]
medium = [
" 9 85 ",
" 3 1 5 ",
" 283 1 ",
" 2 4 7",
" 3 5 ",
"4 7 5 ",
" 4 362 ",
" 2 7 1 ",
" 26 3 ",
]
hard = [
" 19 73 4",
" 98 72 ",
" 5",
" 4 6",
"93 72",
"4 6 ",
"8 ",
" 92 36 ",
"5 42 31 ",
]
evil = [
" 1 9 ",
" 5 4 ",
"2 1 365",
" 327 ",
"9 8",
" 821 ",
"473 5 1",
" 6 4 ",
" 3 8 ",
]
def sudoku(problem, verbose=0):
assert len(problem) == 9 # more sizes later
variables = ["v%02d_%02d" % (i, j) for i in range(9) for j in range(9)]
domains = {}
constraints = []
values = list("123456789")
for v in variables:
domains[v] = fd.FiniteDomain(values)
# line and column constraints
for i in range(9):
constraints.append(fd.AllDistinct(["v%02d_%02d" % (i, j) for j in range(9)]))
constraints.append(fd.AllDistinct(["v%02d_%02d" % (j, i) for j in range(9)]))
# square constraints:
for i in (0, 3, 6):
for j in (0, 3, 6):
constraints.append(
fd.AllDistinct(
[
"v%02d_%02d" % (i + ii, j + jj)
for ii in (0, 1, 2)
for jj in (0, 1, 2)
]
)
)
# fixed values:
for i, line in enumerate(problem):
for j, value in enumerate(line):
if value != " ":
constraints.append(fd.Equals("v%02d_%02d" % (i, j), value))
r = Repository(variables, domains, constraints)
s = Solver().solve_one(r, verbose)
return s
def display_solution(d):
for i in range(9):
for j in range(9):
print(d["v%02d_%02d" % (i, j)], end=" ")
print()
if __name__ == "__main__":
import sys
import getopt
opts, args = getopt.getopt(sys.argv[1:], "dv")
verbose = 0
display = 0
for o, v in opts:
if o == "-v":
verbose += 1
if o == "-d":
display = 1
sol = sudoku(evil, verbose)
if display:
display_solution(sol)
else:
print(sol)
|