File: loop_twofish.c

package info (click to toggle)
loop-aes 3.1d-13etch2
  • links: PTS
  • area: main
  • in suites: etch
  • size: 1,508 kB
  • ctags: 834
  • sloc: ansic: 4,467; asm: 1,786; sh: 579; makefile: 574; python: 53
file content (910 lines) | stat: -rw-r--r-- 27,508 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/*
 *  Copyright 2002 by Free Software Foundation
 *  Redistribution of this file is permitted under the GNU Public License.
 *
 *  IV is now passed as (512 byte) sector number by default.
 *  Jari Ruusu, March 5 2002
 *
 *  Added support for MD5 IV computation and multi-key operation.
 *  Jari Ruusu, October 22 2003
 */

#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/string.h> 
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/slab.h>
#if LINUX_VERSION_CODE >= 0x20600
# include <linux/bio.h>
# include <linux/blkdev.h>
#endif
#include <linux/loop.h>
#include <asm/uaccess.h>
#include <asm/byteorder.h>

#define ROL(x,c) (((x) << (c)) | ((x) >> (32-(c))))
#define ROR(x,c) (((x) >> (c)) | ((x) << (32-(c))))
#define Bswap(x) __le32_to_cpu(x)

#define DWORD __u32
#define BYTE unsigned char

typedef struct fish2_key
{ int keyLen;       /* Key Length in Bit */
  DWORD sboxKeys[4];
  DWORD subKeys[40];
  BYTE  key[32];
  DWORD sbox_full[1024];  /* This have to be 1024 DWORDs */
} fish2_key;


/* Mul_5B[i] is  0x5B * i   in GF(256), whatever that means... */

static const unsigned char Mul_5B[256] = {
    0x00,0x5B,0xB6,0xED,0x05,0x5E,0xB3,0xE8,
    0x0A,0x51,0xBC,0xE7,0x0F,0x54,0xB9,0xE2,
    0x14,0x4F,0xA2,0xF9,0x11,0x4A,0xA7,0xFC,
    0x1E,0x45,0xA8,0xF3,0x1B,0x40,0xAD,0xF6,
    0x28,0x73,0x9E,0xC5,0x2D,0x76,0x9B,0xC0,
    0x22,0x79,0x94,0xCF,0x27,0x7C,0x91,0xCA,
    0x3C,0x67,0x8A,0xD1,0x39,0x62,0x8F,0xD4,
    0x36,0x6D,0x80,0xDB,0x33,0x68,0x85,0xDE,
    0x50,0x0B,0xE6,0xBD,0x55,0x0E,0xE3,0xB8,
    0x5A,0x01,0xEC,0xB7,0x5F,0x04,0xE9,0xB2,
    0x44,0x1F,0xF2,0xA9,0x41,0x1A,0xF7,0xAC,
    0x4E,0x15,0xF8,0xA3,0x4B,0x10,0xFD,0xA6,
    0x78,0x23,0xCE,0x95,0x7D,0x26,0xCB,0x90,
    0x72,0x29,0xC4,0x9F,0x77,0x2C,0xC1,0x9A,
    0x6C,0x37,0xDA,0x81,0x69,0x32,0xDF,0x84,
    0x66,0x3D,0xD0,0x8B,0x63,0x38,0xD5,0x8E,
    0xA0,0xFB,0x16,0x4D,0xA5,0xFE,0x13,0x48,
    0xAA,0xF1,0x1C,0x47,0xAF,0xF4,0x19,0x42,
    0xB4,0xEF,0x02,0x59,0xB1,0xEA,0x07,0x5C,
    0xBE,0xE5,0x08,0x53,0xBB,0xE0,0x0D,0x56,
    0x88,0xD3,0x3E,0x65,0x8D,0xD6,0x3B,0x60,
    0x82,0xD9,0x34,0x6F,0x87,0xDC,0x31,0x6A,
    0x9C,0xC7,0x2A,0x71,0x99,0xC2,0x2F,0x74,
    0x96,0xCD,0x20,0x7B,0x93,0xC8,0x25,0x7E,
    0xF0,0xAB,0x46,0x1D,0xF5,0xAE,0x43,0x18,
    0xFA,0xA1,0x4C,0x17,0xFF,0xA4,0x49,0x12,
    0xE4,0xBF,0x52,0x09,0xE1,0xBA,0x57,0x0C,
    0xEE,0xB5,0x58,0x03,0xEB,0xB0,0x5D,0x06,
    0xD8,0x83,0x6E,0x35,0xDD,0x86,0x6B,0x30,
    0xD2,0x89,0x64,0x3F,0xD7,0x8C,0x61,0x3A,
    0xCC,0x97,0x7A,0x21,0xC9,0x92,0x7F,0x24,
    0xC6,0x9D,0x70,0x2B,0xC3,0x98,0x75,0x2E };


/* Mul_EF[i] is  0xEF * i   in GF(256), whatever that means... */

static const unsigned char Mul_EF[256] = {
    0x00,0xEF,0xB7,0x58,0x07,0xE8,0xB0,0x5F,
    0x0E,0xE1,0xB9,0x56,0x09,0xE6,0xBE,0x51,
    0x1C,0xF3,0xAB,0x44,0x1B,0xF4,0xAC,0x43,
    0x12,0xFD,0xA5,0x4A,0x15,0xFA,0xA2,0x4D,
    0x38,0xD7,0x8F,0x60,0x3F,0xD0,0x88,0x67,
    0x36,0xD9,0x81,0x6E,0x31,0xDE,0x86,0x69,
    0x24,0xCB,0x93,0x7C,0x23,0xCC,0x94,0x7B,
    0x2A,0xC5,0x9D,0x72,0x2D,0xC2,0x9A,0x75,
    0x70,0x9F,0xC7,0x28,0x77,0x98,0xC0,0x2F,
    0x7E,0x91,0xC9,0x26,0x79,0x96,0xCE,0x21,
    0x6C,0x83,0xDB,0x34,0x6B,0x84,0xDC,0x33,
    0x62,0x8D,0xD5,0x3A,0x65,0x8A,0xD2,0x3D,
    0x48,0xA7,0xFF,0x10,0x4F,0xA0,0xF8,0x17,
    0x46,0xA9,0xF1,0x1E,0x41,0xAE,0xF6,0x19,
    0x54,0xBB,0xE3,0x0C,0x53,0xBC,0xE4,0x0B,
    0x5A,0xB5,0xED,0x02,0x5D,0xB2,0xEA,0x05,
    0xE0,0x0F,0x57,0xB8,0xE7,0x08,0x50,0xBF,
    0xEE,0x01,0x59,0xB6,0xE9,0x06,0x5E,0xB1,
    0xFC,0x13,0x4B,0xA4,0xFB,0x14,0x4C,0xA3,
    0xF2,0x1D,0x45,0xAA,0xF5,0x1A,0x42,0xAD,
    0xD8,0x37,0x6F,0x80,0xDF,0x30,0x68,0x87,
    0xD6,0x39,0x61,0x8E,0xD1,0x3E,0x66,0x89,
    0xC4,0x2B,0x73,0x9C,0xC3,0x2C,0x74,0x9B,
    0xCA,0x25,0x7D,0x92,0xCD,0x22,0x7A,0x95,
    0x90,0x7F,0x27,0xC8,0x97,0x78,0x20,0xCF,
    0x9E,0x71,0x29,0xC6,0x99,0x76,0x2E,0xC1,
    0x8C,0x63,0x3B,0xD4,0x8B,0x64,0x3C,0xD3,
    0x82,0x6D,0x35,0xDA,0x85,0x6A,0x32,0xDD,
    0xA8,0x47,0x1F,0xF0,0xAF,0x40,0x18,0xF7,
    0xA6,0x49,0x11,0xFE,0xA1,0x4E,0x16,0xF9,
    0xB4,0x5B,0x03,0xEC,0xB3,0x5C,0x04,0xEB,
    0xBA,0x55,0x0D,0xE2,0xBD,0x52,0x0A,0xE5 };

static inline DWORD mds_mul(BYTE *y)
{ DWORD z;

  z=Mul_EF[y[0]] ^ y[1] ^ Mul_EF[y[2]] ^ Mul_5B[y[3]];
  z<<=8;
  z|=Mul_EF[y[0]] ^ Mul_5B[y[1]] ^ y[2] ^ Mul_EF[y[3]];
  z<<=8;
  z|=Mul_5B[y[0]] ^ Mul_EF[y[1]] ^ Mul_EF[y[2]] ^ y[3];
  z<<=8;
  z|=y[0] ^ Mul_EF[y[1]] ^ Mul_5B[y[2]] ^ Mul_5B[y[3]];
  
  return z;
}  

/* q0 and q1 are the lookup substitutions done in twofish */

static const unsigned char q0[256] =
{	0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 
	0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38, 
	0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, 
	0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 
	0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23, 
	0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82, 
	0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 
	0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61, 
	0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, 
	0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 
	0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66, 
	0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7, 
	0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 
	0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71, 
	0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, 
	0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 
	0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2, 
	0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90, 
	0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 
	0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF, 
	0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, 
	0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 
	0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A, 
	0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A, 
	0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 
	0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D, 
	0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, 
	0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 
	0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8, 
	0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4, 
	0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 
	0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0};
	
static const unsigned char q1[256] = 
{	0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 
	0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B, 
	0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, 
	0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 
	0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D, 
	0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5, 
	0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 
	0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51, 
	0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, 
	0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 
	0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70, 
	0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8, 
	0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 
	0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2, 
	0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, 
	0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 
	0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3, 
	0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E, 
	0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 
	0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9, 
	0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, 
	0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 
	0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19, 
	0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64, 
	0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 
	0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69, 
	0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, 
	0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 
	0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB, 
	0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9, 
	0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 
	0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91
	};


static DWORD f32(DWORD x, const DWORD * k32, int keyLen)
{
  BYTE b[4];
  
  /* Run each byte thru 8x8 S-boxes, xoring with key byte at each stage. */
  /* Note that each byte goes through a different combination of S-boxes. */

  *((DWORD *) b) = Bswap(x);	/* make b[0] = LSB, b[3] = MSB */
  
  switch (((keyLen + 63) / 64) & 3)
  {
  case 0:			/* 256 bits of key */
    b[0] = q1[b[0]];
    b[1] = q0[b[1]];
    b[2] = q0[b[2]];
    b[3] = q1[b[3]];
    
    *((DWORD *) b) ^= k32[3];
    
    /* fall thru, having pre-processed b[0]..b[3] with k32[3] */
  case 3:			/* 192 bits of key */
    b[0] = q1[b[0]];
    b[1] = q1[b[1]];
    b[2] = q0[b[2]];
    b[3] = q0[b[3]];
    
    *((DWORD *) b) ^= k32[2];
    
    /* fall thru, having pre-processed b[0]..b[3] with k32[2] */
  case 2:			/* 128 bits of key */
    b[0] = q0[b[0]];
    b[1] = q1[b[1]];
    b[2] = q0[b[2]];
    b[3] = q1[b[3]];

    *((DWORD *) b) ^= k32[1];
  
    b[0] = q0[b[0]];
    b[1] = q0[b[1]];
    b[2] = q1[b[2]];
    b[3] = q1[b[3]];

    *((DWORD *) b) ^= k32[0];
  
    b[0] = q1[b[0]];
    b[1] = q0[b[1]];
    b[2] = q1[b[2]];
    b[3] = q0[b[3]];
  }

  /* Now perform the MDS matrix multiply inline. */
  return mds_mul(b);
}


static void init_sbox(fish2_key *key)
{ DWORD x,*sbox,z,*k32;
  int i,keyLen;
  BYTE b[4];
    
  k32=key->sboxKeys;
  keyLen=key->keyLen;
  sbox=key->sbox_full;
  
  x=0;
  for (i=0;i<256;i++,x+=0x01010101)
  { 
    *((DWORD *) b) = Bswap(x);	/* make b[0] = LSB, b[3] = MSB */
  
    switch (((keyLen + 63) / 64) & 3)
    {
    case 0:			/* 256 bits of key */
      b[0] = q1[b[0]];
      b[1] = q0[b[1]];
      b[2] = q0[b[2]];
      b[3] = q1[b[3]];
    
      *((DWORD *) b) ^= k32[3];
    
      /* fall thru, having pre-processed b[0]..b[3] with k32[3] */
    case 3:			/* 192 bits of key */
      b[0] = q1[b[0]];
      b[1] = q1[b[1]];
      b[2] = q0[b[2]];
      b[3] = q0[b[3]];
    
      *((DWORD *) b) ^= k32[2];
    
      /* fall thru, having pre-processed b[0]..b[3] with k32[2] */
    case 2:			/* 128 bits of key */
      b[0] = q0[b[0]];
      b[1] = q1[b[1]];
      b[2] = q0[b[2]];
      b[3] = q1[b[3]];

      *((DWORD *) b) ^= k32[1];
  
      b[0] = q0[b[0]];
      b[1] = q0[b[1]];
      b[2] = q1[b[2]];
      b[3] = q1[b[3]];

      *((DWORD *) b) ^= k32[0];
  
      b[0] = q1[b[0]];
      b[1] = q0[b[1]];
      b[2] = q1[b[2]];
      b[3] = q0[b[3]];
    }

    z=Mul_EF[b[0]];
    z<<=8;
    z|=Mul_EF[b[0]];
    z<<=8;
    z|=Mul_5B[b[0]];
    z<<=8;
    z|=b[0];

    sbox[i]=z;

    z=b[1];
    z<<=8;
    z|=Mul_5B[b[1]];
    z<<=8;
    z|=Mul_EF[b[1]];
    z<<=8;
    z|=Mul_EF[b[1]];

    sbox[i+256]=z;
    
    z=Mul_EF[b[2]];
    z<<=8;
    z|=b[2];
    z<<=8;
    z|=Mul_EF[b[2]];
    z<<=8;
    z|=Mul_5B[b[2]];
    
    sbox[i+512]=z;

    z=Mul_5B[b[3]];
    z<<=8;
    z|=Mul_EF[b[3]];
    z<<=8;
    z|=b[3];
    z<<=8;
    z|=Mul_5B[b[3]];
   
    sbox[i+768]=z;
  }
}

 
/* Reed-Solomon code parameters: (12,8) reversible code
   g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
   where a = primitive root of field generator 0x14D */
#define RS_GF_FDBK      0x14D   /* field generator */
#define RS_rem(x) \
    { BYTE  b  =   x >> 24; \
      DWORD g2 = ((b << 1) ^ ((b & 0x80) ? RS_GF_FDBK : 0 )) & 0xFF; \
      DWORD g3 = ((b >> 1) & 0x7F) ^ ((b & 1) ? RS_GF_FDBK >> 1 : 0 ) ^ g2 ; \
      x = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b; \
    }

static DWORD rs_mds(DWORD k0, DWORD k1)
{
  int i, j;
  DWORD r;

  for (i = r = 0; i < 2; i++)
  {
    r ^= (i) ? k0 : k1;     /* merge in 32 more key bits */
    for (j = 0; j < 4; j++) /* shift one byte at a time */
      RS_rem(r);
  }
  return r;
}


#define		INPUT_WHITEN		0	/* subkey array indices */
#define		OUTPUT_WHITEN		4
#define		ROUND_SUBKEYS		8	/* use 2 * (# rounds) */
#define		TOTAL_SUBKEYS		40

static void init_key(fish2_key * key)
{
  int i, k64Cnt;
  int keyLen = key->keyLen;
  int subkeyCnt = TOTAL_SUBKEYS;
  DWORD A, B;
  DWORD k32e[4], k32o[4];	/* even/odd key dwords */

  k64Cnt = (keyLen + 63) / 64;	/* round up to next multiple of 64 bits */
  for (i = 0; i < k64Cnt; i++)
  {				/* split into even/odd key dwords */
    k32e[i] = ((DWORD *)key->key)[2 * i];
    k32o[i] = ((DWORD *)key->key)[2 * i + 1];
    /* compute S-box keys using (12,8) Reed-Solomon code over GF(256) */
    /* store in reverse order */
    key->sboxKeys[k64Cnt - 1 - i] = 
      Bswap(rs_mds(Bswap(k32e[i]), Bswap(k32o[i])));
    
  }

  for (i = 0; i < subkeyCnt / 2; i++)	/* compute round subkeys for PHT */
  {
    A = f32(i * 0x02020202, k32e, keyLen);		/* A uses even key dwords */
    B = f32(i * 0x02020202 + 0x01010101, k32o, keyLen);	/* B uses odd  key
							   dwords */
    B = ROL(B, 8);
    key->subKeys[2 * i] = A + B;	/* combine with a PHT */
    key->subKeys[2 * i + 1] = ROL(A + 2 * B, 9);
  }
  
  init_sbox(key);
}


static inline DWORD f32_sbox(DWORD x,DWORD *sbox)
{ 
  /* Run each byte thru 8x8 S-boxes, xoring with key byte at each stage. */
  /* Note that each byte goes through a different combination of S-boxes. */

  return (sbox[        (x)     &0xff]^ 
          sbox[256 + (((x)>> 8)&0xff)]^ 
          sbox[512 + (((x)>>16)&0xff)]^ 
          sbox[768 + (((x)>>24)&0xff)]);
}


#if LINUX_VERSION_CODE >= 0x20600
typedef sector_t TransferSector_t;
# define LoopInfo_t struct loop_info64
#else
typedef int TransferSector_t;
# define LoopInfo_t struct loop_info
#endif

#if !defined(LOOP_MULTI_KEY_SETUP)
# define LOOP_MULTI_KEY_SETUP 0x4C4D
#endif
#if !defined(LOOP_MULTI_KEY_SETUP_V3)
# define LOOP_MULTI_KEY_SETUP_V3 0x4C4E
#endif

typedef struct {
    fish2_key   *keyPtr[64];
    unsigned    keyMask;
    u_int32_t   partialMD5[4];
} TwofishMultiKey;

static TwofishMultiKey *allocMultiKey(void)
{
    TwofishMultiKey *m;
    fish2_key *a;
    int x, n;

    m = (TwofishMultiKey *) kmalloc(sizeof(TwofishMultiKey), GFP_KERNEL);
    if(!m) return 0;
    memset(m, 0, sizeof(TwofishMultiKey));

    n = PAGE_SIZE / sizeof(fish2_key);
    if(!n) n = 1;

    a = (fish2_key *) kmalloc(sizeof(fish2_key) * n, GFP_KERNEL);
    if(!a) {
        kfree(m);
        return 0;    
    }

    x = 0;
    while((x < 64) && n) {
        m->keyPtr[x] = a;
        a++;
        x++;
        n--;
    }
    return m;
}

static void clearAndFreeMultiKey(TwofishMultiKey *m)
{
    fish2_key *a;
    int x, n;

    n = PAGE_SIZE / sizeof(fish2_key);
    if(!n) n = 1;

    x = 0;
    while(x < 64) {
        a = m->keyPtr[x];
        if(!a) break;
        memset(a, 0, sizeof(fish2_key) * n);
        kfree(a);
        x += n;
    }

    memset(m, 0, sizeof(TwofishMultiKey));
    kfree(m);
}

static int multiKeySetup(struct loop_device *lo, unsigned char *k, int version3)
{
    TwofishMultiKey *m;
    fish2_key *a;
    int x, y, n;
    union {
        u_int32_t     w[16];
        unsigned char b[64];
    } un;
    extern void md5_transform_CPUbyteorder_C(u_int32_t *, u_int32_t const *);

#if LINUX_VERSION_CODE >= 0x20200
    if(lo->lo_key_owner != current->uid && !capable(CAP_SYS_ADMIN))
        return -EPERM;
#endif

    m = (TwofishMultiKey *)lo->key_data;
    if(!m) return -ENXIO;

    n = PAGE_SIZE / sizeof(fish2_key);
    if(!n) n = 1;

    x = 0;
    while(x < 64) {
        if(!m->keyPtr[x]) {
            a = (fish2_key *) kmalloc(sizeof(fish2_key) * n, GFP_KERNEL);
            if(!a) return -ENOMEM;
            y = x;
            while((y < (x + n)) && (y < 64)) {
                m->keyPtr[y] = a;
                a++;
                y++;
            }
        }
        if(copy_from_user(&un.b[0], k, 32)) return -EFAULT;

        a = m->keyPtr[x];
        memset(a, 0, sizeof(fish2_key));
        a->keyLen = lo->lo_encrypt_key_size << 3;
        memcpy(a->key, &un.b[0], lo->lo_encrypt_key_size);
        init_key(a);

        k += 32;
        x++;
    }

    m->partialMD5[0] = 0x67452301;
    m->partialMD5[1] = 0xefcdab89;
    m->partialMD5[2] = 0x98badcfe;
    m->partialMD5[3] = 0x10325476;
    if(version3) {
        /* only first 128 bits of iv-key is used */
        if(copy_from_user(&un.b[0], k, 16)) return -EFAULT;
#if defined(__BIG_ENDIAN)
        un.w[0] = cpu_to_le32(un.w[0]);
        un.w[1] = cpu_to_le32(un.w[1]);
        un.w[2] = cpu_to_le32(un.w[2]);
        un.w[3] = cpu_to_le32(un.w[3]);
#endif
        memset(&un.b[16], 0, 48);
        md5_transform_CPUbyteorder_C(&m->partialMD5[0], &un.w[0]);
        lo->lo_flags |= 0x080000;  /* multi-key-v3 (info exported to user space) */
    }

    m->keyMask = 0x3F;          /* range 0...63 */
    lo->lo_flags |= 0x100000;   /* multi-key (info exported to user space) */
    memset(&un.b[0], 0, 32);
    return 0;
}

#if defined(__BIG_ENDIAN)
/* twofish specific -- returns ivout[] data in CPU byte order */
static void twofish_compute_md5_iv_v3(TransferSector_t devSect, u_int32_t *ivout, u_int32_t *data)
{
    int         x, y, e;
    u_int32_t   buf[16];
    extern void md5_transform_CPUbyteorder(u_int32_t *, u_int32_t const *);

    y = 7;
    e = 16;
    do {
        if (!y) {
            e = 12;
            /* md5_transform_CPUbyteorder wants data in CPU byte order */
            /* devSect is already in CPU byte order -- no need to convert */
            if(sizeof(TransferSector_t) == 8) {
                /* use only 56 bits of sector number */
                buf[12] = devSect;
                buf[13] = (((u_int64_t)devSect >> 32) & 0xFFFFFF) | 0x80000000;
            } else {
                /* 32 bits of sector number + 24 zero bits */
                buf[12] = devSect;
                buf[13] = 0x80000000;
            }
            /* 4024 bits == 31 * 128 bit plaintext blocks + 56 bits of sector number */
            buf[14] = 4024;
            buf[15] = 0;
        }
        x = 0;
        do {
            buf[x    ] = cpu_to_le32(data[0]);
            buf[x + 1] = cpu_to_le32(data[1]);
            buf[x + 2] = cpu_to_le32(data[2]);
            buf[x + 3] = cpu_to_le32(data[3]);
            x += 4;
            data += 4;
        } while (x < e);
        md5_transform_CPUbyteorder(&ivout[0], &buf[0]);
    } while (--y >= 0);
    /* caller wants ivout[] data in CPU byte order -- no conversion needed here */
}
#else
/* on little endian boxes loop_compute_md5_iv_v3() returns ivout[] data in little  */
/* endian byte order which happens to be same as CPU byte order, so we use that */
extern void loop_compute_md5_iv_v3(TransferSector_t, u_int32_t *, u_int32_t *);
#define twofish_compute_md5_iv_v3(a,b,c) loop_compute_md5_iv_v3((a),(b),(c))
#endif


#define roundE_m(x0,x1,x2,x3,rnd) \
      t0 = f32_sbox( x0, key->sbox_full ) ; \
      t1 = f32_sbox( ROL(x1,8), key->sbox_full ); \
      x2 ^= t0 + t1 + key->subKeys[2*rnd+8]; \
      x3 = ROL(x3,1); \
      x3 ^= t0 + 2*t1 + key->subKeys[2*rnd+9]; \
      x2 = ROR(x2,1);

static void blockEncrypt_CBC(fish2_key *key,BYTE *src,BYTE *dst,DWORD iv0,DWORD iv1,DWORD iv2,DWORD iv3)
{ DWORD xx0,xx1,xx2,xx3,t0,t1;
  int len;

  for (len=512;len>=16;len-=16)
  { 
    xx0=Bswap(((DWORD *)src)[0]) ^ key->subKeys[0] ^ iv0;
    xx1=Bswap(((DWORD *)src)[1]) ^ key->subKeys[1] ^ iv1;
    xx2=Bswap(((DWORD *)src)[2]) ^ key->subKeys[2] ^ iv2;
    xx3=Bswap(((DWORD *)src)[3]) ^ key->subKeys[3] ^ iv3;
    
    src+=16;

    roundE_m(xx0,xx1,xx2,xx3,0);
    roundE_m(xx2,xx3,xx0,xx1,1);
    roundE_m(xx0,xx1,xx2,xx3,2);
    roundE_m(xx2,xx3,xx0,xx1,3);
    roundE_m(xx0,xx1,xx2,xx3,4);
    roundE_m(xx2,xx3,xx0,xx1,5);
    roundE_m(xx0,xx1,xx2,xx3,6);
    roundE_m(xx2,xx3,xx0,xx1,7);
    roundE_m(xx0,xx1,xx2,xx3,8);
    roundE_m(xx2,xx3,xx0,xx1,9);
    roundE_m(xx0,xx1,xx2,xx3,10);
    roundE_m(xx2,xx3,xx0,xx1,11);
    roundE_m(xx0,xx1,xx2,xx3,12);
    roundE_m(xx2,xx3,xx0,xx1,13);
    roundE_m(xx0,xx1,xx2,xx3,14);
    roundE_m(xx2,xx3,xx0,xx1,15);
    
    iv0=xx2 ^ key->subKeys[4];
    iv1=xx3 ^ key->subKeys[5];
    iv2=xx0 ^ key->subKeys[6];
    iv3=xx1 ^ key->subKeys[7];
    
    ((DWORD *)dst)[0] = Bswap(iv0);
    ((DWORD *)dst)[1] = Bswap(iv1);
    ((DWORD *)dst)[2] = Bswap(iv2);
    ((DWORD *)dst)[3] = Bswap(iv3);
    dst+=16;
  }
}

#define roundD_m(x0,x1,x2,x3,rnd) \
      t0 = f32_sbox( x0, key->sbox_full); \
      t1 = f32_sbox( ROL(x1,8),key->sbox_full); \
      x2 = ROL(x2,1); \
      x3 ^= t0 + 2*t1 + key->subKeys[rnd*2+9]; \
      x3 = ROR(x3,1); \
      x2 ^= t0 + t1 + key->subKeys[rnd*2+8];

static void blockDecrypt_CBC(fish2_key *key,BYTE *src,BYTE *dst,int len,DWORD iv0,DWORD iv1,DWORD iv2,DWORD iv3)
{ DWORD xx0,xx1,xx2,xx3,t0,t1,lx0,lx1,lx2,lx3;

  for (;len>=16;len-=16)
  { 
    lx0=iv0;iv0=Bswap(((DWORD *)src)[0]);xx0=iv0 ^ key->subKeys[4];
    lx1=iv1;iv1=Bswap(((DWORD *)src)[1]);xx1=iv1 ^ key->subKeys[5];
    lx2=iv2;iv2=Bswap(((DWORD *)src)[2]);xx2=iv2 ^ key->subKeys[6];
    lx3=iv3;iv3=Bswap(((DWORD *)src)[3]);xx3=iv3 ^ key->subKeys[7];
    src+=16;
    
    roundD_m(xx0,xx1,xx2,xx3,15);
    roundD_m(xx2,xx3,xx0,xx1,14);
    roundD_m(xx0,xx1,xx2,xx3,13);
    roundD_m(xx2,xx3,xx0,xx1,12);
    roundD_m(xx0,xx1,xx2,xx3,11);
    roundD_m(xx2,xx3,xx0,xx1,10);
    roundD_m(xx0,xx1,xx2,xx3,9);
    roundD_m(xx2,xx3,xx0,xx1,8);
    roundD_m(xx0,xx1,xx2,xx3,7);
    roundD_m(xx2,xx3,xx0,xx1,6);
    roundD_m(xx0,xx1,xx2,xx3,5);
    roundD_m(xx2,xx3,xx0,xx1,4);
    roundD_m(xx0,xx1,xx2,xx3,3);
    roundD_m(xx2,xx3,xx0,xx1,2);
    roundD_m(xx0,xx1,xx2,xx3,1);
    roundD_m(xx2,xx3,xx0,xx1,0);

    ((DWORD *)dst)[0] = Bswap(xx2 ^ key->subKeys[0] ^ lx0);
    ((DWORD *)dst)[1] = Bswap(xx3 ^ key->subKeys[1] ^ lx1);
    ((DWORD *)dst)[2] = Bswap(xx0 ^ key->subKeys[2] ^ lx2);
    ((DWORD *)dst)[3] = Bswap(xx1 ^ key->subKeys[3] ^ lx3);
    dst+=16;
  }
}

static int transfer_fish2(struct loop_device *lo, int cmd, char *raw_buf,
                  char *loop_buf, int size, TransferSector_t devSect)
{
    TwofishMultiKey *m;
    fish2_key *a;
    u_int32_t iv[4];
    int sectInc = 1;
    unsigned y;

    if (lo->lo_init[0] == 1) sectInc = devSect = 0; /* "-o loinit=1" means SuSE compatible */
    if (size & 0x1FF) return -1;
    m = (TwofishMultiKey *)lo->key_data;
    y = m->keyMask;
    if (cmd == READ) {
        while(size > 0) {
            a = m->keyPtr[((unsigned)devSect) & y];
            if(y) {
                iv[0] = Bswap(((u_int32_t *)raw_buf)[0]);
                iv[1] = Bswap(((u_int32_t *)raw_buf)[1]);
                iv[2] = Bswap(((u_int32_t *)raw_buf)[2]);
                iv[3] = Bswap(((u_int32_t *)raw_buf)[3]);
                blockDecrypt_CBC(a, raw_buf+16, loop_buf+16, 496, iv[0], iv[1], iv[2], iv[3]);
                memcpy(&iv[0], &m->partialMD5[0], 16);
                twofish_compute_md5_iv_v3(devSect, &iv[0], (u_int32_t *)(&loop_buf[16]));
                blockDecrypt_CBC(a, raw_buf, loop_buf, 16, iv[0], iv[1], iv[2], iv[3]);
            } else {
                if(sizeof(TransferSector_t) == 8) {
                    blockDecrypt_CBC(a, raw_buf, loop_buf, 512, devSect, (__u64)devSect>>32, 0, 0);
                } else {
                    blockDecrypt_CBC(a, raw_buf, loop_buf, 512, devSect, 0, 0, 0);
                }
            }
#if LINUX_VERSION_CODE >= 0x20600
            cond_resched();
#elif LINUX_VERSION_CODE >= 0x20400
            if(current->need_resched) {set_current_state(TASK_RUNNING);schedule();}
#else
            if(current->need_resched) {current->state=TASK_RUNNING;schedule();}
#endif
            raw_buf += 512;
            loop_buf += 512;
            size -= 512;
            devSect += sectInc;
        }
    } else {
        while(size > 0) {
            a = m->keyPtr[((unsigned)devSect) & y];
            if(y) {
#if LINUX_VERSION_CODE < 0x20400
                /* on 2.2 and older kernels, real raw_buf may be doing */
                /* writes at any time, so this needs to be stack buffer */
                u_int32_t tmp_raw_buf[128];
                char *TMP_RAW_BUF = (char *)(&tmp_raw_buf[0]);
#else
                /* on 2.4 and later kernels, real raw_buf is not doing */
                /* any writes now so it can be used as temp buffer */
# define TMP_RAW_BUF raw_buf
#endif
                memcpy(TMP_RAW_BUF, loop_buf, 512);
                memcpy(&iv[0], &m->partialMD5[0], 16);
                twofish_compute_md5_iv_v3(devSect, &iv[0], (u_int32_t *)(&TMP_RAW_BUF[16]));
                blockEncrypt_CBC(a, TMP_RAW_BUF, raw_buf, iv[0], iv[1], iv[2], iv[3]);
            } else {
                if(sizeof(TransferSector_t) == 8) {
                    blockEncrypt_CBC(a, loop_buf, raw_buf, devSect, (__u64)devSect>>32, 0, 0);
                } else {
                    blockEncrypt_CBC(a, loop_buf, raw_buf, devSect, 0, 0, 0);
                }
            }
#if LINUX_VERSION_CODE >= 0x20600
            cond_resched();
#elif LINUX_VERSION_CODE >= 0x20400
            if(current->need_resched) {set_current_state(TASK_RUNNING);schedule();}
#else
            if(current->need_resched) {current->state=TASK_RUNNING;schedule();}
#endif
            raw_buf += 512;
            loop_buf += 512;
            size -= 512;
            devSect += sectInc;
        }
    }
    return 0;
}

static int fish2_init(struct loop_device *lo, LoopInfo_t *info)
{
    TwofishMultiKey *m;
    fish2_key *a;
  
    if (info->lo_encrypt_key_size<16 || info->lo_encrypt_key_size>32)
        return -EINVAL;
    lo->key_data = m = allocMultiKey();
    if(!m) return(-ENOMEM);

    a = m->keyPtr[0];  
    memset(a, 0, sizeof(fish2_key));
    a->keyLen = info->lo_encrypt_key_size << 3;
    memcpy(a->key, info->lo_encrypt_key, info->lo_encrypt_key_size);
    init_key(a);

    memset(&info->lo_encrypt_key[0], 0, sizeof(info->lo_encrypt_key));
    return 0;
}

static int fish2_release(struct loop_device *lo)
{
    if(lo->key_data) {
        clearAndFreeMultiKey((TwofishMultiKey *)lo->key_data);
        lo->key_data = 0;
    }
    return(0);
}

static int handleIoctl_fish2(struct loop_device *lo, int cmd, unsigned long arg)
{
    int err;

    switch (cmd) {
    case LOOP_MULTI_KEY_SETUP:
        err = multiKeySetup(lo, (unsigned char *)arg, 0);
        break;
    case LOOP_MULTI_KEY_SETUP_V3:
        err = multiKeySetup(lo, (unsigned char *)arg, 1);
        break;
    default:
        err = -EINVAL;
    }
    return err;
}

#if LINUX_VERSION_CODE < 0x20600
static void fish2_lock(struct loop_device *lo)
{
    MOD_INC_USE_COUNT;
}
static void fish2_unlock(struct loop_device *lo)
{
    MOD_DEC_USE_COUNT;
}   
#endif

static struct loop_func_table fish2_funcs = {
  number: 3, /* 3 == LO_CRYPT_FISH2 */
  transfer: (void *) transfer_fish2,
  init: (void *) fish2_init,
  release: fish2_release,
#if LINUX_VERSION_CODE >= 0x20600
  owner: THIS_MODULE,
#else
  lock: fish2_lock,
  unlock: fish2_unlock,
#endif
  ioctl: (void *) handleIoctl_fish2
};

#if LINUX_VERSION_CODE >= 0x20600
# define loop_twofish_init  __init loop_twofish_initfn
# define loop_twofish_exit  loop_twofish_exitfn
#else
# define loop_twofish_init  init_module
# define loop_twofish_exit  cleanup_module
#endif

int loop_twofish_init(void)
{ 
  if (loop_register_transfer(&fish2_funcs)) {
    printk(KERN_WARNING "loop: unable to register twofish transfer\n");
    return -EIO;
  }
  printk(KERN_INFO "loop: registered twofish encryption\n");
  return 0;
}

void loop_twofish_exit(void)
{ 
  if (loop_unregister_transfer(fish2_funcs.number)) {
    printk(KERN_WARNING "loop: unable to unregister twofish transfer\n");
    return;
  }
  printk(KERN_INFO "loop: unregistered twofish encryption\n");
}

#if LINUX_VERSION_CODE >= 0x20600
module_init(loop_twofish_initfn);
module_exit(loop_twofish_exitfn);
#endif

#if defined(MODULE_LICENSE)
MODULE_LICENSE("GPL");
#endif