File: aes-x86.S

package info (click to toggle)
loop-aes 3.3a-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,856 kB
  • ctags: 833
  • sloc: ansic: 4,603; asm: 2,475; sh: 840; makefile: 467
file content (927 lines) | stat: -rw-r--r-- 26,398 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
//
// Copyright (c) 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.
// All rights reserved.
//
// TERMS
//
//  Redistribution and use in source and binary forms, with or without
//  modification, are permitted subject to the following conditions:
//
//  1. Redistributions of source code must retain the above copyright
//     notice, this list of conditions and the following disclaimer.
//
//  2. Redistributions in binary form must reproduce the above copyright
//     notice, this list of conditions and the following disclaimer in the
//     documentation and/or other materials provided with the distribution.
//
//  3. The copyright holder's name must not be used to endorse or promote
//     any products derived from this software without his specific prior
//     written permission.
//
//  This software is provided 'as is' with no express or implied warranties
//  of correctness or fitness for purpose.

// Modified by Jari Ruusu,  December 24 2001
//  - Converted syntax to GNU CPP/assembler syntax
//  - C programming interface converted back to "old" API
//  - Minor portability cleanups and speed optimizations

// Modified by Jari Ruusu,  April 11 2002
//  - Added above copyright and terms to resulting object code so that
//    binary distributions can avoid legal trouble

// An AES (Rijndael) implementation for x86 compatible processors. This
// version uses i386 instruction set but instruction scheduling is optimized
// for Pentium-2. This version only implements the standard AES block length
// (128 bits, 16 bytes). This code does not preserve the eax, ecx or edx
// registers or the artihmetic status flags. However, the ebx, esi, edi, and
// ebp registers are preserved across calls.

// void aes_set_key(aes_context *cx, const unsigned char key[], const int key_len, const int f)
// void aes_encrypt(const aes_context *cx, const unsigned char in_blk[], unsigned char out_blk[])
// void aes_decrypt(const aes_context *cx, const unsigned char in_blk[], unsigned char out_blk[])

#if defined(USE_UNDERLINE)
# define aes_set_key _aes_set_key
# define aes_encrypt _aes_encrypt
# define aes_decrypt _aes_decrypt
#endif
#if !defined(ALIGN32BYTES)
# define ALIGN32BYTES 32
#endif

	.file	"aes-x86.S"
	.globl	aes_set_key
	.globl	aes_encrypt
	.globl	aes_decrypt

	.text
copyright:
	.ascii "    \000"
	.ascii "Copyright (c) 2001, Dr Brian Gladman <brg@gladman.uk.net>, Worcester, UK.\000"
	.ascii "All rights reserved.\000"
	.ascii "    \000"
	.ascii "TERMS\000"
	.ascii "    \000"
	.ascii " Redistribution and use in source and binary forms, with or without\000"
	.ascii " modification, are permitted subject to the following conditions:\000"
	.ascii "    \000"
	.ascii " 1. Redistributions of source code must retain the above copyright\000"
	.ascii "    notice, this list of conditions and the following disclaimer.\000"
	.ascii "    \000"
	.ascii " 2. Redistributions in binary form must reproduce the above copyright\000"
	.ascii "    notice, this list of conditions and the following disclaimer in the\000"
	.ascii "    documentation and/or other materials provided with the distribution.\000"
	.ascii "    \000"
	.ascii " 3. The copyright holder's name must not be used to endorse or promote\000"
	.ascii "    any products derived from this software without his specific prior\000"
	.ascii "    written permission.\000"
	.ascii "    \000"
	.ascii " This software is provided 'as is' with no express or implied warranties\000"
	.ascii " of correctness or fitness for purpose.\000"
	.ascii "    \000"

#define tlen	1024	// length of each of 4 'xor' arrays (256 32-bit words)

// offsets to parameters with one register pushed onto stack

#define ctx	8	// AES context structure
#define in_blk	12	// input byte array address parameter
#define out_blk	16	// output byte array address parameter

// offsets in context structure

#define nkey	0	// key length, size 4
#define nrnd	4	// number of rounds, size 4
#define ekey	8	// encryption key schedule base address, size 256
#define dkey	264	// decryption key schedule base address, size 256

// This macro performs a forward encryption cycle. It is entered with
// the first previous round column values in %eax, %ebx, %esi and %edi and
// exits with the final values in the same registers.

#define fwd_rnd(p1,p2)			 \
	mov	%ebx,(%esp)		;\
	movzbl	%al,%edx		;\
	mov	%eax,%ecx		;\
	mov	p2(%ebp),%eax		;\
	mov	%edi,4(%esp)		;\
	mov	p2+12(%ebp),%edi	;\
	xor	p1(,%edx,4),%eax	;\
	movzbl	%ch,%edx		;\
	shr	$16,%ecx		;\
	mov	p2+4(%ebp),%ebx		;\
	xor	p1+tlen(,%edx,4),%edi	;\
	movzbl	%cl,%edx		;\
	movzbl	%ch,%ecx		;\
	xor	p1+3*tlen(,%ecx,4),%ebx	;\
	mov	%esi,%ecx		;\
	mov	p1+2*tlen(,%edx,4),%esi	;\
	movzbl	%cl,%edx		;\
	xor	p1(,%edx,4),%esi	;\
	movzbl	%ch,%edx		;\
	shr	$16,%ecx		;\
	xor	p1+tlen(,%edx,4),%ebx	;\
	movzbl	%cl,%edx		;\
	movzbl	%ch,%ecx		;\
	xor	p1+2*tlen(,%edx,4),%eax	;\
	mov	(%esp),%edx		;\
	xor	p1+3*tlen(,%ecx,4),%edi ;\
	movzbl	%dl,%ecx		;\
	xor	p2+8(%ebp),%esi		;\
	xor	p1(,%ecx,4),%ebx	;\
	movzbl	%dh,%ecx		;\
	shr	$16,%edx		;\
	xor	p1+tlen(,%ecx,4),%eax	;\
	movzbl	%dl,%ecx		;\
	movzbl	%dh,%edx		;\
	xor	p1+2*tlen(,%ecx,4),%edi	;\
	mov	4(%esp),%ecx		;\
	xor	p1+3*tlen(,%edx,4),%esi ;\
	movzbl	%cl,%edx		;\
	xor	p1(,%edx,4),%edi	;\
	movzbl	%ch,%edx		;\
	shr	$16,%ecx		;\
	xor	p1+tlen(,%edx,4),%esi	;\
	movzbl	%cl,%edx		;\
	movzbl	%ch,%ecx		;\
	xor	p1+2*tlen(,%edx,4),%ebx	;\
	xor	p1+3*tlen(,%ecx,4),%eax

// This macro performs an inverse encryption cycle. It is entered with
// the first previous round column values in %eax, %ebx, %esi and %edi and
// exits with the final values in the same registers.

#define inv_rnd(p1,p2)			 \
	movzbl	%al,%edx		;\
	mov	%ebx,(%esp)		;\
	mov	%eax,%ecx		;\
	mov	p2(%ebp),%eax		;\
	mov	%edi,4(%esp)		;\
	mov	p2+4(%ebp),%ebx		;\
	xor	p1(,%edx,4),%eax	;\
	movzbl	%ch,%edx		;\
	shr	$16,%ecx		;\
	mov	p2+12(%ebp),%edi	;\
	xor	p1+tlen(,%edx,4),%ebx	;\
	movzbl	%cl,%edx		;\
	movzbl	%ch,%ecx		;\
	xor	p1+3*tlen(,%ecx,4),%edi	;\
	mov	%esi,%ecx		;\
	mov	p1+2*tlen(,%edx,4),%esi	;\
	movzbl	%cl,%edx		;\
	xor	p1(,%edx,4),%esi	;\
	movzbl	%ch,%edx		;\
	shr	$16,%ecx		;\
	xor	p1+tlen(,%edx,4),%edi	;\
	movzbl	%cl,%edx		;\
	movzbl	%ch,%ecx		;\
	xor	p1+2*tlen(,%edx,4),%eax	;\
	mov	(%esp),%edx		;\
	xor	p1+3*tlen(,%ecx,4),%ebx ;\
	movzbl	%dl,%ecx		;\
	xor	p2+8(%ebp),%esi		;\
	xor	p1(,%ecx,4),%ebx	;\
	movzbl	%dh,%ecx		;\
	shr	$16,%edx		;\
	xor	p1+tlen(,%ecx,4),%esi	;\
	movzbl	%dl,%ecx		;\
	movzbl	%dh,%edx		;\
	xor	p1+2*tlen(,%ecx,4),%edi	;\
	mov	4(%esp),%ecx		;\
	xor	p1+3*tlen(,%edx,4),%eax ;\
	movzbl	%cl,%edx		;\
	xor	p1(,%edx,4),%edi	;\
	movzbl	%ch,%edx		;\
	shr	$16,%ecx		;\
	xor	p1+tlen(,%edx,4),%eax	;\
	movzbl	%cl,%edx		;\
	movzbl	%ch,%ecx		;\
	xor	p1+2*tlen(,%edx,4),%ebx	;\
	xor	p1+3*tlen(,%ecx,4),%esi

// AES (Rijndael) Encryption Subroutine

	.text
	.align	ALIGN32BYTES
aes_encrypt:
	push	%ebp
	mov	ctx(%esp),%ebp		// pointer to context
	mov	in_blk(%esp),%ecx
	push	%ebx
	push	%esi
	push	%edi
	mov	nrnd(%ebp),%edx		// number of rounds
	lea	ekey+16(%ebp),%ebp	// key pointer

// input four columns and xor in first round key

	mov	(%ecx),%eax
	mov	4(%ecx),%ebx
	mov	8(%ecx),%esi
	mov	12(%ecx),%edi
	xor	-16(%ebp),%eax
	xor	-12(%ebp),%ebx
	xor	-8(%ebp),%esi
	xor	-4(%ebp),%edi

	sub	$8,%esp			// space for register saves on stack

	sub	$10,%edx
	je	aes_15
	add	$32,%ebp
	sub	$2,%edx
	je	aes_13
	add	$32,%ebp

	fwd_rnd(aes_ft_tab,-64)		// 14 rounds for 256-bit key
	fwd_rnd(aes_ft_tab,-48)
aes_13:	fwd_rnd(aes_ft_tab,-32)		// 12 rounds for 192-bit key
	fwd_rnd(aes_ft_tab,-16)
aes_15:	fwd_rnd(aes_ft_tab,0)		// 10 rounds for 128-bit key
	fwd_rnd(aes_ft_tab,16)
	fwd_rnd(aes_ft_tab,32)
	fwd_rnd(aes_ft_tab,48)
	fwd_rnd(aes_ft_tab,64)
	fwd_rnd(aes_ft_tab,80)
	fwd_rnd(aes_ft_tab,96)
	fwd_rnd(aes_ft_tab,112)
	fwd_rnd(aes_ft_tab,128)
	fwd_rnd(aes_fl_tab,144)		// last round uses a different table

// move final values to the output array.

	mov	out_blk+20(%esp),%ebp
	add	$8,%esp
	mov	%eax,(%ebp)
	mov	%ebx,4(%ebp)
	mov	%esi,8(%ebp)
	mov	%edi,12(%ebp)
	pop	%edi
	pop	%esi
	pop	%ebx
	pop	%ebp
	ret


// AES (Rijndael) Decryption Subroutine

	.align	ALIGN32BYTES
aes_decrypt:
	push	%ebp
	mov	ctx(%esp),%ebp		// pointer to context
	mov	in_blk(%esp),%ecx
	push	%ebx
	push	%esi
	push	%edi
	mov	nrnd(%ebp),%edx		// number of rounds
	lea	dkey+16(%ebp),%ebp	// key pointer

// input four columns and xor in first round key

	mov	(%ecx),%eax
	mov	4(%ecx),%ebx
	mov	8(%ecx),%esi
	mov	12(%ecx),%edi
	xor	-16(%ebp),%eax
	xor	-12(%ebp),%ebx
	xor	-8(%ebp),%esi
	xor	-4(%ebp),%edi

	sub	$8,%esp			// space for register saves on stack

	sub	$10,%edx
	je	aes_25
	add	$32,%ebp
	sub	$2,%edx
	je	aes_23
	add	$32,%ebp

	inv_rnd(aes_it_tab,-64)		// 14 rounds for 256-bit key
	inv_rnd(aes_it_tab,-48)
aes_23:	inv_rnd(aes_it_tab,-32)		// 12 rounds for 192-bit key
	inv_rnd(aes_it_tab,-16)
aes_25:	inv_rnd(aes_it_tab,0)		// 10 rounds for 128-bit key
	inv_rnd(aes_it_tab,16)
	inv_rnd(aes_it_tab,32)
	inv_rnd(aes_it_tab,48)
	inv_rnd(aes_it_tab,64)
	inv_rnd(aes_it_tab,80)
	inv_rnd(aes_it_tab,96)
	inv_rnd(aes_it_tab,112)
	inv_rnd(aes_it_tab,128)
	inv_rnd(aes_il_tab,144)		// last round uses a different table

// move final values to the output array.

	mov	out_blk+20(%esp),%ebp
	add	$8,%esp
	mov	%eax,(%ebp)
	mov	%ebx,4(%ebp)
	mov	%esi,8(%ebp)
	mov	%edi,12(%ebp)
	pop	%edi
	pop	%esi
	pop	%ebx
	pop	%ebp
	ret

// AES (Rijndael) Key Schedule Subroutine

// input/output parameters

#define aes_cx	12	// AES context
#define in_key	16	// key input array address
#define key_ln	20	// key length, bytes (16,24,32) or bits (128,192,256)
#define ed_flg	24	// 0=create both encr/decr keys, 1=create encr key only

// offsets for locals

#define cnt	-4
#define slen	8

// This macro performs a column mixing operation on an input 32-bit
// word to give a 32-bit result. It uses each of the 4 bytes in the
// the input column to index 4 different tables of 256 32-bit words
// that are xored together to form the output value.

#define mix_col(p1)			 \
	movzbl	%bl,%ecx		;\
	mov	p1(,%ecx,4),%eax	;\
	movzbl	%bh,%ecx		;\
	ror	$16,%ebx		;\
	xor	p1+tlen(,%ecx,4),%eax	;\
	movzbl	%bl,%ecx		;\
	xor	p1+2*tlen(,%ecx,4),%eax	;\
	movzbl	%bh,%ecx		;\
	xor	p1+3*tlen(,%ecx,4),%eax

// Key Schedule Macros

#define ksc4(p1)			 \
	rol	$24,%ebx		;\
	mix_col(aes_fl_tab)		;\
	ror	$8,%ebx			;\
	xor	4*p1+aes_rcon_tab,%eax	;\
	xor	%eax,%esi		;\
	xor	%esi,%ebp		;\
	mov	%esi,16*p1(%edi)	;\
	mov	%ebp,16*p1+4(%edi)	;\
	xor	%ebp,%edx		;\
	xor	%edx,%ebx		;\
	mov	%edx,16*p1+8(%edi)	;\
	mov	%ebx,16*p1+12(%edi)

#define ksc6(p1)			 \
	rol	$24,%ebx		;\
	mix_col(aes_fl_tab)		;\
	ror	$8,%ebx			;\
	xor	4*p1+aes_rcon_tab,%eax	;\
	xor	24*p1-24(%edi),%eax	;\
	mov	%eax,24*p1(%edi)	;\
	xor	24*p1-20(%edi),%eax	;\
	mov	%eax,24*p1+4(%edi)	;\
	xor	%eax,%esi		;\
	xor	%esi,%ebp		;\
	mov	%esi,24*p1+8(%edi)	;\
	mov	%ebp,24*p1+12(%edi)	;\
	xor	%ebp,%edx		;\
	xor	%edx,%ebx		;\
	mov	%edx,24*p1+16(%edi)	;\
	mov	%ebx,24*p1+20(%edi)

#define ksc8(p1)			 \
	rol	$24,%ebx		;\
	mix_col(aes_fl_tab)		;\
	ror	$8,%ebx			;\
	xor	4*p1+aes_rcon_tab,%eax	;\
	xor	32*p1-32(%edi),%eax	;\
	mov	%eax,32*p1(%edi)	;\
	xor	32*p1-28(%edi),%eax	;\
	mov	%eax,32*p1+4(%edi)	;\
	xor	32*p1-24(%edi),%eax	;\
	mov	%eax,32*p1+8(%edi)	;\
	xor	32*p1-20(%edi),%eax	;\
	mov	%eax,32*p1+12(%edi)	;\
	push	%ebx			;\
	mov	%eax,%ebx		;\
	mix_col(aes_fl_tab)		;\
	pop	%ebx			;\
	xor	%eax,%esi		;\
	xor	%esi,%ebp		;\
	mov	%esi,32*p1+16(%edi)	;\
	mov	%ebp,32*p1+20(%edi)	;\
	xor	%ebp,%edx		;\
	xor	%edx,%ebx		;\
	mov	%edx,32*p1+24(%edi)	;\
	mov	%ebx,32*p1+28(%edi)

	.align	ALIGN32BYTES
aes_set_key:
	pushfl
	push	%ebp
	mov	%esp,%ebp
	sub	$slen,%esp
	push	%ebx
	push	%esi
	push	%edi

	mov	aes_cx(%ebp),%edx	// edx -> AES context

	mov	key_ln(%ebp),%ecx	// key length
	cmpl	$128,%ecx
	jb	aes_30
	shr	$3,%ecx
aes_30:	cmpl	$32,%ecx
	je	aes_32
	cmpl	$24,%ecx
	je	aes_32
	mov	$16,%ecx
aes_32:	shr	$2,%ecx
	mov	%ecx,nkey(%edx)

	lea	6(%ecx),%eax		// 10/12/14 for 4/6/8 32-bit key length
	mov	%eax,nrnd(%edx)

	mov	in_key(%ebp),%esi	// key input array
	lea	ekey(%edx),%edi		// key position in AES context
	cld
	push	%ebp
	mov	%ecx,%eax		// save key length in eax
	rep ;	movsl			// words in the key schedule
	mov	-4(%esi),%ebx		// put some values in registers
	mov	-8(%esi),%edx		// to allow faster code
	mov	-12(%esi),%ebp
	mov	-16(%esi),%esi

	cmpl	$4,%eax			// jump on key size
	je	aes_36
	cmpl	$6,%eax
	je	aes_35

	ksc8(0)
	ksc8(1)
	ksc8(2)
	ksc8(3)
	ksc8(4)
	ksc8(5)
	ksc8(6)
	jmp	aes_37
aes_35:	ksc6(0)
	ksc6(1)
	ksc6(2)
	ksc6(3)
	ksc6(4)
	ksc6(5)
	ksc6(6)
	ksc6(7)
	jmp	aes_37
aes_36:	ksc4(0)
	ksc4(1)
	ksc4(2)
	ksc4(3)
	ksc4(4)
	ksc4(5)
	ksc4(6)
	ksc4(7)
	ksc4(8)
	ksc4(9)
aes_37:	pop	%ebp
	mov	aes_cx(%ebp),%edx	// edx -> AES context
	cmpl	$0,ed_flg(%ebp)
	jne	aes_39

// compile decryption key schedule from encryption schedule - reverse
// order and do mix_column operation on round keys except first and last

	mov	nrnd(%edx),%eax		// kt = cx->d_key + nc * cx->Nrnd
	shl	$2,%eax
	lea	dkey(%edx,%eax,4),%edi
	lea	ekey(%edx),%esi		// kf = cx->e_key

	movsl				// copy first round key (unmodified)
	movsl
	movsl
	movsl
	sub	$32,%edi
	movl	$1,cnt(%ebp)
aes_38:					// do mix column on each column of
	lodsl				// each round key
	mov	%eax,%ebx
	mix_col(aes_im_tab)
	stosl
	lodsl
	mov	%eax,%ebx
	mix_col(aes_im_tab)
	stosl
	lodsl
	mov	%eax,%ebx
	mix_col(aes_im_tab)
	stosl
	lodsl
	mov	%eax,%ebx
	mix_col(aes_im_tab)
	stosl
	sub	$32,%edi

	incl	cnt(%ebp)
	mov	cnt(%ebp),%eax
	cmp	nrnd(%edx),%eax
	jb	aes_38

	movsl				// copy last round key (unmodified)
	movsl
	movsl
	movsl
aes_39:	pop	%edi
	pop	%esi
	pop	%ebx
	mov	%ebp,%esp
	pop	%ebp
	popfl
	ret


// finite field multiplies by {02}, {04} and {08}

#define f2(x)	((x<<1)^(((x>>7)&1)*0x11b))
#define f4(x)	((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
#define f8(x)	((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))

// finite field multiplies required in table generation

#define f3(x)	(f2(x) ^ x)
#define f9(x)	(f8(x) ^ x)
#define fb(x)	(f8(x) ^ f2(x) ^ x)
#define fd(x)	(f8(x) ^ f4(x) ^ x)
#define fe(x)	(f8(x) ^ f4(x) ^ f2(x))

// These defines generate the forward table entries

#define u0(x)	((f3(x) << 24) | (x << 16) | (x << 8) | f2(x))
#define u1(x)	((x << 24) | (x << 16) | (f2(x) << 8) | f3(x))
#define u2(x)	((x << 24) | (f2(x) << 16) | (f3(x) << 8) | x)
#define u3(x)	((f2(x) << 24) | (f3(x) << 16) | (x << 8) | x)

// These defines generate the inverse table entries

#define v0(x)	((fb(x) << 24) | (fd(x) << 16) | (f9(x) << 8) | fe(x))
#define v1(x)	((fd(x) << 24) | (f9(x) << 16) | (fe(x) << 8) | fb(x))
#define v2(x)	((f9(x) << 24) | (fe(x) << 16) | (fb(x) << 8) | fd(x))
#define v3(x)	((fe(x) << 24) | (fb(x) << 16) | (fd(x) << 8) | f9(x))

// These defines generate entries for the last round tables

#define w0(x)	(x)
#define w1(x)	(x <<  8)
#define w2(x)	(x << 16)
#define w3(x)	(x << 24)

// macro to generate inverse mix column tables (needed for the key schedule)

#define im_data0(p1) \
	.long	p1(0x00),p1(0x01),p1(0x02),p1(0x03),p1(0x04),p1(0x05),p1(0x06),p1(0x07) ;\
	.long	p1(0x08),p1(0x09),p1(0x0a),p1(0x0b),p1(0x0c),p1(0x0d),p1(0x0e),p1(0x0f) ;\
	.long	p1(0x10),p1(0x11),p1(0x12),p1(0x13),p1(0x14),p1(0x15),p1(0x16),p1(0x17) ;\
	.long	p1(0x18),p1(0x19),p1(0x1a),p1(0x1b),p1(0x1c),p1(0x1d),p1(0x1e),p1(0x1f)
#define im_data1(p1) \
	.long	p1(0x20),p1(0x21),p1(0x22),p1(0x23),p1(0x24),p1(0x25),p1(0x26),p1(0x27) ;\
	.long	p1(0x28),p1(0x29),p1(0x2a),p1(0x2b),p1(0x2c),p1(0x2d),p1(0x2e),p1(0x2f) ;\
	.long	p1(0x30),p1(0x31),p1(0x32),p1(0x33),p1(0x34),p1(0x35),p1(0x36),p1(0x37) ;\
	.long	p1(0x38),p1(0x39),p1(0x3a),p1(0x3b),p1(0x3c),p1(0x3d),p1(0x3e),p1(0x3f)
#define im_data2(p1) \
	.long	p1(0x40),p1(0x41),p1(0x42),p1(0x43),p1(0x44),p1(0x45),p1(0x46),p1(0x47) ;\
	.long	p1(0x48),p1(0x49),p1(0x4a),p1(0x4b),p1(0x4c),p1(0x4d),p1(0x4e),p1(0x4f) ;\
	.long	p1(0x50),p1(0x51),p1(0x52),p1(0x53),p1(0x54),p1(0x55),p1(0x56),p1(0x57) ;\
	.long	p1(0x58),p1(0x59),p1(0x5a),p1(0x5b),p1(0x5c),p1(0x5d),p1(0x5e),p1(0x5f)
#define im_data3(p1) \
	.long	p1(0x60),p1(0x61),p1(0x62),p1(0x63),p1(0x64),p1(0x65),p1(0x66),p1(0x67) ;\
	.long	p1(0x68),p1(0x69),p1(0x6a),p1(0x6b),p1(0x6c),p1(0x6d),p1(0x6e),p1(0x6f) ;\
	.long	p1(0x70),p1(0x71),p1(0x72),p1(0x73),p1(0x74),p1(0x75),p1(0x76),p1(0x77) ;\
	.long	p1(0x78),p1(0x79),p1(0x7a),p1(0x7b),p1(0x7c),p1(0x7d),p1(0x7e),p1(0x7f)
#define im_data4(p1) \
	.long	p1(0x80),p1(0x81),p1(0x82),p1(0x83),p1(0x84),p1(0x85),p1(0x86),p1(0x87) ;\
	.long	p1(0x88),p1(0x89),p1(0x8a),p1(0x8b),p1(0x8c),p1(0x8d),p1(0x8e),p1(0x8f) ;\
	.long	p1(0x90),p1(0x91),p1(0x92),p1(0x93),p1(0x94),p1(0x95),p1(0x96),p1(0x97) ;\
	.long	p1(0x98),p1(0x99),p1(0x9a),p1(0x9b),p1(0x9c),p1(0x9d),p1(0x9e),p1(0x9f)
#define im_data5(p1) \
	.long	p1(0xa0),p1(0xa1),p1(0xa2),p1(0xa3),p1(0xa4),p1(0xa5),p1(0xa6),p1(0xa7) ;\
	.long	p1(0xa8),p1(0xa9),p1(0xaa),p1(0xab),p1(0xac),p1(0xad),p1(0xae),p1(0xaf) ;\
	.long	p1(0xb0),p1(0xb1),p1(0xb2),p1(0xb3),p1(0xb4),p1(0xb5),p1(0xb6),p1(0xb7) ;\
	.long	p1(0xb8),p1(0xb9),p1(0xba),p1(0xbb),p1(0xbc),p1(0xbd),p1(0xbe),p1(0xbf)
#define im_data6(p1) \
	.long	p1(0xc0),p1(0xc1),p1(0xc2),p1(0xc3),p1(0xc4),p1(0xc5),p1(0xc6),p1(0xc7) ;\
	.long	p1(0xc8),p1(0xc9),p1(0xca),p1(0xcb),p1(0xcc),p1(0xcd),p1(0xce),p1(0xcf) ;\
	.long	p1(0xd0),p1(0xd1),p1(0xd2),p1(0xd3),p1(0xd4),p1(0xd5),p1(0xd6),p1(0xd7) ;\
	.long	p1(0xd8),p1(0xd9),p1(0xda),p1(0xdb),p1(0xdc),p1(0xdd),p1(0xde),p1(0xdf)
#define im_data7(p1) \
	.long	p1(0xe0),p1(0xe1),p1(0xe2),p1(0xe3),p1(0xe4),p1(0xe5),p1(0xe6),p1(0xe7) ;\
	.long	p1(0xe8),p1(0xe9),p1(0xea),p1(0xeb),p1(0xec),p1(0xed),p1(0xee),p1(0xef) ;\
	.long	p1(0xf0),p1(0xf1),p1(0xf2),p1(0xf3),p1(0xf4),p1(0xf5),p1(0xf6),p1(0xf7) ;\
	.long	p1(0xf8),p1(0xf9),p1(0xfa),p1(0xfb),p1(0xfc),p1(0xfd),p1(0xfe),p1(0xff)

// S-box data - 256 entries

#define sb_data0(p1) \
	.long	p1(0x63),p1(0x7c),p1(0x77),p1(0x7b),p1(0xf2),p1(0x6b),p1(0x6f),p1(0xc5) ;\
	.long	p1(0x30),p1(0x01),p1(0x67),p1(0x2b),p1(0xfe),p1(0xd7),p1(0xab),p1(0x76) ;\
	.long	p1(0xca),p1(0x82),p1(0xc9),p1(0x7d),p1(0xfa),p1(0x59),p1(0x47),p1(0xf0) ;\
	.long	p1(0xad),p1(0xd4),p1(0xa2),p1(0xaf),p1(0x9c),p1(0xa4),p1(0x72),p1(0xc0)
#define sb_data1(p1) \
	.long	p1(0xb7),p1(0xfd),p1(0x93),p1(0x26),p1(0x36),p1(0x3f),p1(0xf7),p1(0xcc) ;\
	.long	p1(0x34),p1(0xa5),p1(0xe5),p1(0xf1),p1(0x71),p1(0xd8),p1(0x31),p1(0x15) ;\
	.long	p1(0x04),p1(0xc7),p1(0x23),p1(0xc3),p1(0x18),p1(0x96),p1(0x05),p1(0x9a) ;\
	.long	p1(0x07),p1(0x12),p1(0x80),p1(0xe2),p1(0xeb),p1(0x27),p1(0xb2),p1(0x75)
#define sb_data2(p1) \
	.long	p1(0x09),p1(0x83),p1(0x2c),p1(0x1a),p1(0x1b),p1(0x6e),p1(0x5a),p1(0xa0) ;\
	.long	p1(0x52),p1(0x3b),p1(0xd6),p1(0xb3),p1(0x29),p1(0xe3),p1(0x2f),p1(0x84) ;\
	.long	p1(0x53),p1(0xd1),p1(0x00),p1(0xed),p1(0x20),p1(0xfc),p1(0xb1),p1(0x5b) ;\
	.long	p1(0x6a),p1(0xcb),p1(0xbe),p1(0x39),p1(0x4a),p1(0x4c),p1(0x58),p1(0xcf)
#define sb_data3(p1) \
	.long	p1(0xd0),p1(0xef),p1(0xaa),p1(0xfb),p1(0x43),p1(0x4d),p1(0x33),p1(0x85) ;\
	.long	p1(0x45),p1(0xf9),p1(0x02),p1(0x7f),p1(0x50),p1(0x3c),p1(0x9f),p1(0xa8) ;\
	.long	p1(0x51),p1(0xa3),p1(0x40),p1(0x8f),p1(0x92),p1(0x9d),p1(0x38),p1(0xf5) ;\
	.long	p1(0xbc),p1(0xb6),p1(0xda),p1(0x21),p1(0x10),p1(0xff),p1(0xf3),p1(0xd2)
#define sb_data4(p1) \
	.long	p1(0xcd),p1(0x0c),p1(0x13),p1(0xec),p1(0x5f),p1(0x97),p1(0x44),p1(0x17) ;\
	.long	p1(0xc4),p1(0xa7),p1(0x7e),p1(0x3d),p1(0x64),p1(0x5d),p1(0x19),p1(0x73) ;\
	.long	p1(0x60),p1(0x81),p1(0x4f),p1(0xdc),p1(0x22),p1(0x2a),p1(0x90),p1(0x88) ;\
	.long	p1(0x46),p1(0xee),p1(0xb8),p1(0x14),p1(0xde),p1(0x5e),p1(0x0b),p1(0xdb)
#define sb_data5(p1) \
	.long	p1(0xe0),p1(0x32),p1(0x3a),p1(0x0a),p1(0x49),p1(0x06),p1(0x24),p1(0x5c) ;\
	.long	p1(0xc2),p1(0xd3),p1(0xac),p1(0x62),p1(0x91),p1(0x95),p1(0xe4),p1(0x79) ;\
	.long	p1(0xe7),p1(0xc8),p1(0x37),p1(0x6d),p1(0x8d),p1(0xd5),p1(0x4e),p1(0xa9) ;\
	.long	p1(0x6c),p1(0x56),p1(0xf4),p1(0xea),p1(0x65),p1(0x7a),p1(0xae),p1(0x08)
#define sb_data6(p1) \
	.long	p1(0xba),p1(0x78),p1(0x25),p1(0x2e),p1(0x1c),p1(0xa6),p1(0xb4),p1(0xc6) ;\
	.long	p1(0xe8),p1(0xdd),p1(0x74),p1(0x1f),p1(0x4b),p1(0xbd),p1(0x8b),p1(0x8a) ;\
	.long	p1(0x70),p1(0x3e),p1(0xb5),p1(0x66),p1(0x48),p1(0x03),p1(0xf6),p1(0x0e) ;\
	.long	p1(0x61),p1(0x35),p1(0x57),p1(0xb9),p1(0x86),p1(0xc1),p1(0x1d),p1(0x9e)
#define sb_data7(p1) \
	.long	p1(0xe1),p1(0xf8),p1(0x98),p1(0x11),p1(0x69),p1(0xd9),p1(0x8e),p1(0x94) ;\
	.long	p1(0x9b),p1(0x1e),p1(0x87),p1(0xe9),p1(0xce),p1(0x55),p1(0x28),p1(0xdf) ;\
	.long	p1(0x8c),p1(0xa1),p1(0x89),p1(0x0d),p1(0xbf),p1(0xe6),p1(0x42),p1(0x68) ;\
	.long	p1(0x41),p1(0x99),p1(0x2d),p1(0x0f),p1(0xb0),p1(0x54),p1(0xbb),p1(0x16)

// Inverse S-box data - 256 entries

#define ib_data0(p1) \
	.long	p1(0x52),p1(0x09),p1(0x6a),p1(0xd5),p1(0x30),p1(0x36),p1(0xa5),p1(0x38) ;\
	.long	p1(0xbf),p1(0x40),p1(0xa3),p1(0x9e),p1(0x81),p1(0xf3),p1(0xd7),p1(0xfb) ;\
	.long	p1(0x7c),p1(0xe3),p1(0x39),p1(0x82),p1(0x9b),p1(0x2f),p1(0xff),p1(0x87) ;\
	.long	p1(0x34),p1(0x8e),p1(0x43),p1(0x44),p1(0xc4),p1(0xde),p1(0xe9),p1(0xcb)
#define ib_data1(p1) \
	.long	p1(0x54),p1(0x7b),p1(0x94),p1(0x32),p1(0xa6),p1(0xc2),p1(0x23),p1(0x3d) ;\
	.long	p1(0xee),p1(0x4c),p1(0x95),p1(0x0b),p1(0x42),p1(0xfa),p1(0xc3),p1(0x4e) ;\
	.long	p1(0x08),p1(0x2e),p1(0xa1),p1(0x66),p1(0x28),p1(0xd9),p1(0x24),p1(0xb2) ;\
	.long	p1(0x76),p1(0x5b),p1(0xa2),p1(0x49),p1(0x6d),p1(0x8b),p1(0xd1),p1(0x25)
#define ib_data2(p1) \
	.long	p1(0x72),p1(0xf8),p1(0xf6),p1(0x64),p1(0x86),p1(0x68),p1(0x98),p1(0x16) ;\
	.long	p1(0xd4),p1(0xa4),p1(0x5c),p1(0xcc),p1(0x5d),p1(0x65),p1(0xb6),p1(0x92) ;\
	.long	p1(0x6c),p1(0x70),p1(0x48),p1(0x50),p1(0xfd),p1(0xed),p1(0xb9),p1(0xda) ;\
	.long	p1(0x5e),p1(0x15),p1(0x46),p1(0x57),p1(0xa7),p1(0x8d),p1(0x9d),p1(0x84)
#define ib_data3(p1) \
	.long	p1(0x90),p1(0xd8),p1(0xab),p1(0x00),p1(0x8c),p1(0xbc),p1(0xd3),p1(0x0a) ;\
	.long	p1(0xf7),p1(0xe4),p1(0x58),p1(0x05),p1(0xb8),p1(0xb3),p1(0x45),p1(0x06) ;\
	.long	p1(0xd0),p1(0x2c),p1(0x1e),p1(0x8f),p1(0xca),p1(0x3f),p1(0x0f),p1(0x02) ;\
	.long	p1(0xc1),p1(0xaf),p1(0xbd),p1(0x03),p1(0x01),p1(0x13),p1(0x8a),p1(0x6b)
#define ib_data4(p1) \
	.long	p1(0x3a),p1(0x91),p1(0x11),p1(0x41),p1(0x4f),p1(0x67),p1(0xdc),p1(0xea) ;\
	.long	p1(0x97),p1(0xf2),p1(0xcf),p1(0xce),p1(0xf0),p1(0xb4),p1(0xe6),p1(0x73) ;\
	.long	p1(0x96),p1(0xac),p1(0x74),p1(0x22),p1(0xe7),p1(0xad),p1(0x35),p1(0x85) ;\
	.long	p1(0xe2),p1(0xf9),p1(0x37),p1(0xe8),p1(0x1c),p1(0x75),p1(0xdf),p1(0x6e)
#define ib_data5(p1) \
	.long	p1(0x47),p1(0xf1),p1(0x1a),p1(0x71),p1(0x1d),p1(0x29),p1(0xc5),p1(0x89) ;\
	.long	p1(0x6f),p1(0xb7),p1(0x62),p1(0x0e),p1(0xaa),p1(0x18),p1(0xbe),p1(0x1b) ;\
	.long	p1(0xfc),p1(0x56),p1(0x3e),p1(0x4b),p1(0xc6),p1(0xd2),p1(0x79),p1(0x20) ;\
	.long	p1(0x9a),p1(0xdb),p1(0xc0),p1(0xfe),p1(0x78),p1(0xcd),p1(0x5a),p1(0xf4)
#define ib_data6(p1) \
	.long	p1(0x1f),p1(0xdd),p1(0xa8),p1(0x33),p1(0x88),p1(0x07),p1(0xc7),p1(0x31) ;\
	.long	p1(0xb1),p1(0x12),p1(0x10),p1(0x59),p1(0x27),p1(0x80),p1(0xec),p1(0x5f) ;\
	.long	p1(0x60),p1(0x51),p1(0x7f),p1(0xa9),p1(0x19),p1(0xb5),p1(0x4a),p1(0x0d) ;\
	.long	p1(0x2d),p1(0xe5),p1(0x7a),p1(0x9f),p1(0x93),p1(0xc9),p1(0x9c),p1(0xef)
#define ib_data7(p1) \
	.long	p1(0xa0),p1(0xe0),p1(0x3b),p1(0x4d),p1(0xae),p1(0x2a),p1(0xf5),p1(0xb0) ;\
	.long	p1(0xc8),p1(0xeb),p1(0xbb),p1(0x3c),p1(0x83),p1(0x53),p1(0x99),p1(0x61) ;\
	.long	p1(0x17),p1(0x2b),p1(0x04),p1(0x7e),p1(0xba),p1(0x77),p1(0xd6),p1(0x26) ;\
	.long	p1(0xe1),p1(0x69),p1(0x14),p1(0x63),p1(0x55),p1(0x21),p1(0x0c),p1(0x7d)

// The rcon_table (needed for the key schedule)
//
// Here is original Dr Brian Gladman's source code:
//	_rcon_tab:
//	%assign x   1
//	%rep 29
//	    dd  x
//	%assign x f2(x)
//	%endrep
//
// Here is precomputed output (it's more portable this way):

	.section .rodata
	.align	ALIGN32BYTES
aes_rcon_tab:
	.long	0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80
	.long	0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f
	.long	0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4
	.long	0xb3,0x7d,0xfa,0xef,0xc5

// The forward xor tables

	.align	ALIGN32BYTES
aes_ft_tab:
	sb_data0(u0)
	sb_data1(u0)
	sb_data2(u0)
	sb_data3(u0)
	sb_data4(u0)
	sb_data5(u0)
	sb_data6(u0)
	sb_data7(u0)

	sb_data0(u1)
	sb_data1(u1)
	sb_data2(u1)
	sb_data3(u1)
	sb_data4(u1)
	sb_data5(u1)
	sb_data6(u1)
	sb_data7(u1)

	sb_data0(u2)
	sb_data1(u2)
	sb_data2(u2)
	sb_data3(u2)
	sb_data4(u2)
	sb_data5(u2)
	sb_data6(u2)
	sb_data7(u2)

	sb_data0(u3)
	sb_data1(u3)
	sb_data2(u3)
	sb_data3(u3)
	sb_data4(u3)
	sb_data5(u3)
	sb_data6(u3)
	sb_data7(u3)

	.align	ALIGN32BYTES
aes_fl_tab:
	sb_data0(w0)
	sb_data1(w0)
	sb_data2(w0)
	sb_data3(w0)
	sb_data4(w0)
	sb_data5(w0)
	sb_data6(w0)
	sb_data7(w0)

	sb_data0(w1)
	sb_data1(w1)
	sb_data2(w1)
	sb_data3(w1)
	sb_data4(w1)
	sb_data5(w1)
	sb_data6(w1)
	sb_data7(w1)

	sb_data0(w2)
	sb_data1(w2)
	sb_data2(w2)
	sb_data3(w2)
	sb_data4(w2)
	sb_data5(w2)
	sb_data6(w2)
	sb_data7(w2)

	sb_data0(w3)
	sb_data1(w3)
	sb_data2(w3)
	sb_data3(w3)
	sb_data4(w3)
	sb_data5(w3)
	sb_data6(w3)
	sb_data7(w3)

// The inverse xor tables

	.align	ALIGN32BYTES
aes_it_tab:
	ib_data0(v0)
	ib_data1(v0)
	ib_data2(v0)
	ib_data3(v0)
	ib_data4(v0)
	ib_data5(v0)
	ib_data6(v0)
	ib_data7(v0)

	ib_data0(v1)
	ib_data1(v1)
	ib_data2(v1)
	ib_data3(v1)
	ib_data4(v1)
	ib_data5(v1)
	ib_data6(v1)
	ib_data7(v1)

	ib_data0(v2)
	ib_data1(v2)
	ib_data2(v2)
	ib_data3(v2)
	ib_data4(v2)
	ib_data5(v2)
	ib_data6(v2)
	ib_data7(v2)

	ib_data0(v3)
	ib_data1(v3)
	ib_data2(v3)
	ib_data3(v3)
	ib_data4(v3)
	ib_data5(v3)
	ib_data6(v3)
	ib_data7(v3)

	.align	ALIGN32BYTES
aes_il_tab:
	ib_data0(w0)
	ib_data1(w0)
	ib_data2(w0)
	ib_data3(w0)
	ib_data4(w0)
	ib_data5(w0)
	ib_data6(w0)
	ib_data7(w0)

	ib_data0(w1)
	ib_data1(w1)
	ib_data2(w1)
	ib_data3(w1)
	ib_data4(w1)
	ib_data5(w1)
	ib_data6(w1)
	ib_data7(w1)

	ib_data0(w2)
	ib_data1(w2)
	ib_data2(w2)
	ib_data3(w2)
	ib_data4(w2)
	ib_data5(w2)
	ib_data6(w2)
	ib_data7(w2)

	ib_data0(w3)
	ib_data1(w3)
	ib_data2(w3)
	ib_data3(w3)
	ib_data4(w3)
	ib_data5(w3)
	ib_data6(w3)
	ib_data7(w3)

// The inverse mix column tables

	.align	ALIGN32BYTES
aes_im_tab:
	im_data0(v0)
	im_data1(v0)
	im_data2(v0)
	im_data3(v0)
	im_data4(v0)
	im_data5(v0)
	im_data6(v0)
	im_data7(v0)

	im_data0(v1)
	im_data1(v1)
	im_data2(v1)
	im_data3(v1)
	im_data4(v1)
	im_data5(v1)
	im_data6(v1)
	im_data7(v1)

	im_data0(v2)
	im_data1(v2)
	im_data2(v2)
	im_data3(v2)
	im_data4(v2)
	im_data5(v2)
	im_data6(v2)
	im_data7(v2)

	im_data0(v3)
	im_data1(v3)
	im_data2(v3)
	im_data3(v3)
	im_data4(v3)
	im_data5(v3)
	im_data6(v3)
	im_data7(v3)

#if defined(__ELF__) && defined(SECTION_NOTE_GNU_STACK)
	.section .note.GNU-stack,"",@progbits
#endif