1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
|
\documentclass[twoside,12pt]{report}
\usepackage{a4wide,array,epsfig,amsmath,amssymb,axodraw,makeidx,calc,alltt,mathpple}
\makeindex
\def\indextt#1{\index{#1@{\tt#1}}}
\renewcommand\bibname{References}
\renewcommand{\baselinestretch}{1.2}
\renewcommand{\arraystretch}{1.2}
\renewcommand{\tabcolsep}{8pt}
\renewcommand{\arraycolsep}{8pt}
\renewcommand{\theenumi}{\alph{enumi}}
\renewcommand{\labelenumi}{\theenumi)\,}
\advance\footnotesep 4pt
\def\thefootnote{\fnsymbol{footnote}}
\parskip=4pt
\parindent=0pt
\pagestyle{headings}
\raggedbottom
\sloppy
\makeatletter
% from report.cls:
\def\@makechapterhead#1{%
% \vspace*{50\p@}%
{\parindent \z@ \raggedright \normalfont
\ifnum \c@secnumdepth >\m@ne
\Huge\bfseries \thechapter~~~
% \par\nobreak
% \vskip 20\p@
\fi
\interlinepenalty\@M
\Huge \bfseries #1\par\nobreak
\vskip 20\p@
}}
\def\@makeschapterhead#1{%
% \vspace*{50\p@}%
{\parindent \z@ \raggedright
\normalfont
\interlinepenalty\@M
\Huge \bfseries #1\par\nobreak
\vskip 20\p@
}}
\def\bbox{\vskip .5\baselineskip\par
\newbox\grey\setbox\grey=\vbox\bgroup\ignorespaces}
\def\ebox{\egroup%
\hbox{%
\special{ps: gsave
initmatrix currentpoint translate 1 65781 div dup scale % 1bp = 65781sp
newpath
0 -\number\dp\grey\space moveto
\number\wd\grey\space dup dup 0 rlineto
\number\ht\grey\space lineto
neg 0 rlineto
closepath
gsave .9 setgray fill grestore
0 setlinewidth stroke
grestore}%
\box\grey}%
\vskip .5\baselineskip\par}
\def\greyed#1{\special{ps: .7 setgray}#1\special{ps: 0 setgray}}
\def\oldcr#1{\let\temp=\\#1\let\\=\temp}
\def\biitab{\bbox%
\begin{tabular}{>{\oldcr\raggedleft\hspace{0pt}}p{.35\linewidth}%
>{\oldcr\raggedright\hspace{0pt}}p{.57\linewidth}}}
\def\biiitab#1{\bbox%
\hspace*{5pt}
\begin{tabular}{>{\oldcr\raggedright\hspace{0pt}}p{.235\linewidth}%
>{\oldcr\raggedright\hspace{0pt}}p{.185\linewidth}%
>{\oldcr\raggedright\hspace{0pt}}p{.44\linewidth}}
{\it #1} & {\it default value} \\ \hline}
\def\etab{\end{tabular}\ebox}
\let\dots\textellipsis
\def\FA{\textit{FeynArts}}
\def\FC{\textit{FormCalc}}
\def\FO{\textit{FORM}}
\def\FF{\textit{FF}}
\def\LT{\textit{LoopTools}}
\def\mma{{\it Mathematica}}
\def\limfunc#1{\mathop{\rm #1}}
\def\Re{\limfunc{Re}}
\def\Retilde{\limfunc{\widetilde{Re}}}
\def\unity{{\rm 1\mskip-4.25mu l}}
\def\ie{i.e.\ }
\def\eg{e.g.\ }
\def\lbrac{\symbol{123}}
\def\rbrac{\symbol{125}}
\def\uscore{\symbol{95}}
\def\home{\symbol{126}}
\def\power{\symbol{94}}
\def\i{{\rm i}}
\def\d{{\rm d}}
\def\M{{\cal M}}
\def\O{{\cal O}}
\def\mmin{\ensuremath{m_{\mathrm{min}}^2}}
\def\zeroeps{\ensuremath{\varepsilon_{\mathrm{zero}}}}
\def\diffeps{\ensuremath{\varepsilon_{\mathrm{diff}}}}
\def\Code#1{\ensuremath{\texttt{#1}}}
%\def\Code#1{\ensuremath{\texttt{\Red{#1}}}}
\def\Name#1{\ensuremath{\textit{\rmfamily #1}}}
%\def\Name#1{\ensuremath{\textit{\rmfamily\Green{#1}}}}
\def\Var#1{\ensuremath{\mathit{#1}}}
%\def\Var#1{\ensuremath{\mathit{\Blue{#1}}}}
\def\Va{\Var{a}}
\def\Vb{\Var{b}}
\def\Vc{\Var{c}}
\def\Vcp{\Var{c'}}
\def\Vd{\Var{d}}
\def\Ve{\Var{e}}
\def\Vf{\Var{f}}
\def\Vg{\Var{g}}
\def\Vgp{\Var{g'}}
\def\Vh{\Var{h}}
\def\Vi{\Var{i}}
\def\Vl{\Var{l}}
\def\Vm{\Var{m}}
\def\Vn{\Var{n}}
\def\Vnp{\Var{n'}}
\def\Vo{\Var{o}}
\def\Vp{\Var{p}}
\def\Vr{\Var{r}}
\def\Vs{\Var{s}}
\def\Vsp{\Var{s'}}
\def\Vt{\Var{t}}
\def\Vv{\Var{v}}
\def\Vmu{\Var{\mu}}
\def\Vnu{\Var{\nu}}
\hyphenation{Feyn-Arts}
\begin{document}
\thispagestyle{empty}
\vspace*{.7\textheight}
\hfill\hbox{\underline{%
\vrule width 0pt height 0pt depth 2ex%
\Huge \LT~2.15~~~User's Guide}}
\vspace*{1ex}
\hfill\hbox{April 19, 2018~~~~~Thomas Hahn}
\clearpage
\vspace*{.5\textheight}
\vfill
\hrule
\medskip
\begin{scriptsize}
The dreadful legal stuff:
\LT\ is free software, but is not in the public domain.
Instead it is covered by the GNU library general public license.
In plain English this means:
1) We don't promise that this software works.
(But if you find any bugs, please let us know!)
2) You can use this software for whatever you want.
You don't have to pay us.
3) You may not pretend that you wrote this software.
If you use it in a program, you must acknowledge
somewhere in your publication that you've used
our code.
If you're a lawyer, you will rejoice at the exact wording of the license
at \Code{http://gnu.org/licenses/lgpl.html}.
\LT\ is available from \Code{http://feynarts.de/looptools}.
\FC\ is available from \Code{http://feynarts.de/formcalc}.
\FA\ is available from \Code{http://feynarts.de}.
\FF\ is available from \Code{http://gjvo.home.xs4all.nl/FF.html}.
If you make this software available to others please provide them with
this manual, too.
If you find any bugs, or want to make suggestions, or just write fan mail,
address it to:
\vspace*{-2ex}
\begin{quote}
Thomas Hahn \\
Max-Planck-Institut f\"ur Physik \\
(Werner-Heisenberg-Institut) \\
F\"ohringer Ring 6 \\
D--80805 Munich, Germany \\
e-mail: \Code{hahn@feynarts.de}
\end{quote}
\end{scriptsize}
\clearpage
\tableofcontents
\clearpage
\chapter{\LT}
\LT\ is a package for evaluation of scalar and tensor one-loop integrals
based on the \FF\ package by G.J.~van~Oldenborgh \cite{vOV90}. It provides
the actual numerical implementations of the functions appearing in \FC\
output. These are the scalar one-loop functions of \FF\ and the 2-, 3-,
4-, and 5-point tensor-coefficient functions in the conventions of
\cite{De93}. \LT\ offers three interfaces, Fortran, C/C++, and \mma, so
most programming tastes should be served.%
\index{FF@\FF}%
\section{Installation}
\index{installation!\LT}%
To compile the package, a Fortran compiler and the GNU C compiler
(\Code{gcc} or \Code{clang}) are required.
\LT\ comes in a compressed tar archive \Code{LoopTools-2.12.tar.gz}.
Execute the following commands to unpack and compile the package.
\bbox
\begin{verbatim}
gunzip -c LoopTools-2.12.tar.gz | tar xvf -
cd LoopTools-2.12
./configure
make
make install
make clean
\end{verbatim}
\ebox
The \Code{configure} script finds out the necessary system information
for the compilation. \Code{make} then makes the following objects in
the \Code{LoopTools/\Var{hosttype}} directory:
\begin{tabbing}
\rlap{\Code{lib/libooptools.a}}\hspace{.3\linewidth} \=
the \LT\ library \\
\Code{include/looptools.h} \>
the include file for Fortran \\
\Code{include/clooptools.h} \>
the include file for C/C++ \\
\Code{bin/lt} \>
the LoopTools command-line executable \\
\Code{bin/fcc} \>
a script to aid C/C++ compilation \\
\Code{bin/LoopTools} \>
the MathLink executable
\end{tabbing}
Use ``\Code{make lib}'' to build only the library part (without the
MathLink executable).
\pagebreak
The resulting directory structure is
\begin{tabbing}
\rlap{\Code{LoopTools/}}\hspace{.3\linewidth} \=
the \LT\ directory \\
\Code{\greyed{LoopTools/}src/} \>
directory of the source files \\
\Code{\greyed{LoopTools/}build/} \>
(temporary) directory for object files (after \Code{make}) \\
\Code{\greyed{LoopTools/}\Var{hosttype}/} \>
directory for programs and libraries (after \Code{make install})
\end{tabbing}
\index{hosttype}%
The \Var{hosttype} is a string identifying the system, \eg
\Code{i686-Linux} or \Code{alpha-OSF1}. Its purpose as a directory
name is to separate the binaries for different platforms. To see what
its value is on your system, type the following command at the shell
prompt:
\begin{verbatim}
echo `uname -m`-`uname -s`
\end{verbatim}
In contrast to the original \FF\ library, the \LT\ libraries and
executables depend on no additional files (error message catalogues etc.),
so they may be installed in some `public' place instead of
\Code{LoopTools/\Var{hosttype}}. To this end, configure with \eg
\begin{verbatim}
./configure --prefix=/usr/local
\end{verbatim}
whereupon \Code{make install} will put the libraries, include files,
and executables in \Code{/usr/local/lib}, \Code{include}, and
\Code{bin}, respectively. (Note: To write on \Code{/usr/local},
superuser privileges are usually required.)
\clearpage
\section{One-Loop Integrals}
\label{sect:loopint}
\index{momenta!conventions for}%
Consider the following general one-loop diagram.
\begin{center}
\unitlength=1bp%
\begin{picture}(130,125)(0,0)
\ArrowLine(5,10)(30,30)
\ArrowLine(5,115)(30,95)
\ArrowLine(120,115)(95,95)
\ArrowLine(120,10)(95,30)
\ArrowLine(95,30)(30,30)
\ArrowLine(30,30)(30,95)
\ArrowLine(30,95)(95,95)
\Vertex(30,30){2}
\Vertex(30,95){2}
\Vertex(95,30){2}
\Vertex(95,95){2}
\multiput(95,44)(0,17){3}{\makebox(0,0){$.$}}
\Text(0,115)[r]{$p_1$}
\Text(125,115)[l]{$p_2$}
\Text(125,7)[l]{$p_{N - 1}$}
\Text(0,7)[r]{$p_N$}
\Text(23,62)[r]{$q$}
\Text(62,100)[b]{$q + k_1$}
\Text(62,25)[t]{$q + k_{N - 1}$}
\Text(36,62)[l]{$m_1$}
\Text(62,90)[t]{$m_2$}
\Text(62,35)[b]{$m_N$}
\end{picture}
\end{center}
The integral contained in this diagram is
\begin{align}
\label{eq:1loopint}%\tag{$*$}
T_{\mu_1\ldots\mu_P}^N &=
\frac{\mu^{4 - D}}{\i\pi^{D/2}\,r_\Gamma}
%\frac{(2\pi\mu)^{4 - D}}{\i\pi^2}
\int\d^Dq\,
\frac{q_{\mu_1}\cdots q_{\mu_P}}
{\bigl[q^2 - m_1^2\bigr]\,
\bigl[(q + k_1)^2 - m_2^2\bigr] \cdots
\bigl[(q + k_{N - 1})^2 - m_N^2\bigr]} \\[1ex]
\notag
r_\Gamma &= \frac{\Gamma^2(1 - \varepsilon)\Gamma(1+\varepsilon)}
{\Gamma(1 - 2\varepsilon)}\,,
\quad D = 4 - 2\varepsilon\,,
\end{align}
where the momenta $k_i$ that appear in the denominators are related to
the external momenta $p_i$ as
\begin{equation}
\label{eq:ptok}
\begin{aligned}
p_1 &= k_1\,, & \qquad
p_2 &= k_2 - k_1\,, & \qquad
\ldots && \qquad
p_N &= k_N - k_{N - 1}\,, \\
k_1 &= p_1\,, &
k_2 &= p_1 + p_2\,, &
\ldots &&
k_N &= \sum_{i=1}^N p_i\,.
\end{aligned}
\end{equation}
The representation given in \eqref{eq:1loopint} is correct for
dimensional regularization or dimensional reduction. (In the latter case
the integrals are kept $D$-dimensional although the rest of the algebra
is performed in 4 dimensions.) $\mu$ plays the r\^ole of a
renormalization scale that keeps track of the correct dimension of the
integral in $D$ space--time dimensions. In constrained differential
renormalization the mass scale enters in a conceptually different way;
however, the dependence of the one-loop integrals on $\mu$ is the same
as for dimensional regularization (for details see \cite{HaP98}).%
\index{renormalization scale}%
The denominators arise from the propagators running in the loop.
$P$, the number of $q$'s in the numerator, determines the Lorentz tensor
structure of the whole integral, \ie $P = 0$ denotes a scalar integral,
$P = 1$ a vector integral, etc. From the definition it is obvious that the
integrals are symmetric under permutation of the Lorentz indices. The
$q$'s in the numerator arise typically from fermion propagators or from
vertices that correspond to terms with derivatives in the Lagrangian.%
\index{tensor structure}%
The nomenclature is $A$ for $T^1$, $B$ for $T^2$, etc. The scalar
integrals are denoted by a subscripted zero: $A_0$, $B_0$, etc.
\subsection{Tensor Coefficients}
\index{tensor coefficients}%
\index{Lorentz-covariant tensors}%
The integrals with a tensor structure can be reduced to linear
combinations of Lorentz-covariant tensors constructed from the metric
tensor $g_{\mu\nu}$ and a linearly independent set of the momenta
\cite{PaV79}. The choice of this basis is not unique.
\index{decomposition}%
\LT\ provides not the tensor integrals themselves, but the coefficients of
these Lorentz-covariant tensors. It works in a basis formed from
$g_{\mu\nu}$ and the momenta $k_i$, which are the sums of the external
momenta $p_i$ (see Eq.\ (\ref{eq:ptok})) \cite{De93}. In this basis
the tensor-coefficient functions are totally symmetric in their indices.
For the integrals up to the four-point function the decomposition reads
explicitly
\begin{align*}
B_\mu &=
k_{1\mu} B_1\,,
\displaybreak[0] \\
B_{\mu\nu} &=
g_{\mu\nu} B_{00} + k_{1\mu} k_{1\nu} B_{11}\,,
\displaybreak[0] \\[1ex]
C_\mu &=
k_{1\mu} C_1 + k_{2\mu} C_2 = \sum_{i=1}^2 k_{i\mu} C_i\,,
\displaybreak[0] \\
C_{\mu\nu} &=
g_{\mu\nu} C_{00} + \sum_{i,j=1}^2 k_{i\mu} k_{j\nu} C_{ij}\,,
\displaybreak[0] \\
C_{\mu\nu\rho} &=
\sum_{i=1}^2 \bigl(
g_{\mu\nu} k_{i\rho}
+ g_{\nu\rho} k_{i\mu}
+ g_{\mu\rho} k_{i\nu}\bigr) C_{00i}+
\sum_{i,j,\ell=1}^2 k_{i\mu} k_{j\nu} k_{\ell\rho} C_{ij\ell}\,,
\displaybreak[0] \\[1ex]
D_\mu &=
\sum_{i=1}^3 k_{i\mu} D_i\,,
\displaybreak[0] \\
D_{\mu\nu} &=
g_{\mu\nu} D_{00} + \sum_{i,j=1}^3 k_{i\mu} k_{j\nu} D_{ij}\,,
\displaybreak[0] \\
D_{\mu\nu\rho} &=
\sum_{i=1}^3\bigl(
g_{\mu\nu} k_{i\rho}
+ g_{\nu\rho} k_{i\mu}
+ g_{\mu\rho} k_{i\nu}\bigr) D_{00i}
+ \sum_{i,j,\ell=1}^3 k_{i\mu} k_{j\nu} k_{\ell\rho} D_{ij\ell}\,,
\displaybreak[0] \\
D_{\mu\nu\rho\sigma} &=
(g_{\mu\nu} g_{\rho\sigma}
+ g_{\mu\rho} g_{\nu\sigma}
+ g_{\mu\sigma} g_{\nu\rho}) D_{0000} \\
& \hphantom{=} + \sum_{i,j=1}^3 \bigl(
g_{\mu\nu} k_{i\rho} k_{j\sigma}
+ g_{\nu\rho} k_{i\mu} k_{j\sigma}
+ g_{\mu\rho} k_{i\nu} k_{j\sigma} \\[-1.5ex]
& \hphantom{=+\sum_{i,j=1}^3\bigl(\,}
+ g_{\mu\sigma} k_{i\nu} k_{j\rho}
+ g_{\nu\sigma} k_{i\mu} k_{j\rho}
+ g_{\rho\sigma} k_{i\mu} k_{j\nu}\bigr) D_{00ij} \\[-1ex]
& \hphantom{=} + \sum_{i,j,\ell,m=1}^3
k_{i\mu} k_{j\nu} k_{\ell\rho} k_{m\sigma} D_{ij\ell m}\,.
\end{align*}
Of all scalar and tensor-coefficient functions implemented in \LT, only
$A_0$, $B_0$, $B_1$, $B_{00}$, $B_{11}$, $B_{001}$, $B_{111}$, $B'_{00}$,
the C coefficients with at least two indices zero, and the D coefficients
with at least four indices zero are actually UV divergent.
\subsection{Conventions for the Momenta}
\index{momenta!conventions for}%
A large source of mistakes is the way of specifying the momenta in the
one-loop integrals. The prime error in this respect is the confusion of
the external momenta $p_i$ with the momenta $k_i$ appearing in the
denominators, which are the sums of the $p_i$ (see Eq.\ (\ref{eq:ptok})).
Consider for example the following diagram:
\begin{center}
\unitlength=1bp%
\begin{picture}(155,140)(0,15)
\ArrowLine(20,20)(40,40)
\ArrowLine(20,140)(40,120)
\ArrowLine(136,80)(105,80)
\ArrowLine(40,40)(40,120)
\ArrowLine(105,80)(40,40)
\ArrowLine(40,120)(105,80)
\Vertex(40,40){2}
\Vertex(105,80){2}
\Vertex(40,120){2}
\Text(16,140)[br]{$p_1$}
\Text(141,80)[cl]{$p_2$}
\Text(16,20)[tr]{$p_3$}
\Text(35,80)[cr]{$q$}
\Text(75,102)[bl]{$q + k_1$}
\Text(75,59)[tl]{$q + k_2$}
\Text(44,80)[cl]{$m_1$}
\Text(77,95)[tr]{$m_2$}
\Text(77,65)[br]{$m_3$}
\end{picture}
\end{center}
The three-point function corresponding to this diagram can be written
either in terms of the external momenta as
$$
C\bigl(p_1^2, p_2^2, (p_1 + p_2)^2, m_1^2, m_2^2, m_3^2\bigr)
$$
or in terms of the momenta $k_i$ as
$$
C\bigl(k_1^2, (k_1 - k_2)^2, k_2^2, m_1^2, m_2^2, m_3^2\bigr)\,.
$$
In both cases the {\it same} function is called with the {\it same}
arguments since of course $k_1 = p_1$ and $k_2 = p_1 + p_2$. (The
arguments are given in the conventions of \LT.)
It is however important to realize that \LT\ functions like $C_1$ and
$C_{112}$ are the coefficients respectively of $k_{1\mu}$ and $k_{1\mu}
k_{1\nu} k_{2\rho}$, not of $p_{1\mu}$ and $p_{1\mu} p_{1\nu} p_{2\rho}$.
%\pagebreak
\section{Functions provided by \LT}
The distinction in the following for real and complex arguments
is for Fortran and C/C++ only. Mathematica automatically chooses
the correct version.
\indextt{nocache}%
The uncached LoopTools functions are not thread-safe, which may be
rather dangerous in a concurrent environment as it can \emph{silently}
lead to wrong results. Thread-safety has been achieved by serializing
cache writes through mutexes. The scalar functions were moved into the
cache system to make them thread-safe. The uncached versions (not
thread-safe) are still available in Fortran and C/C++ with a
`\Code{nocache}' epithet.
\subsection{One-point function}
\indextt{Aget}%
\indextt{Aput}%
\indextt{Aputnocache}%
\indextt{A0i}%
\indextt{A0}%
\indextt{A00}%
\begin{center}
\begin{tabular}{|l|l|l|} \hline
Function call (\Va\ real) & (\Va\ complex) & Description \\ \hline
\Code{A0i(id, \Va)} & \Code{A0iC(id, \Va)} &
one-point tensor coefficient \Code{id} \\
\Code{Aget(\Va)} & \Code{AgetC(\Va)} &
all one-point tensor coefficients \\
\Code{Aput(res,\,\Va)} & \Code{AputC(res,\,\Va)} &
all one-point tensor coefficients \\
\Code{Aputnocache(res,\,\Va)} & \Code{AputnocacheC(res,\,\Va)} &
all one-point tensor coefficients \\
\textit{special cases of \Code{A0i}:} && \\
\Code{A0(\Va)} & \Code{A0C(\Va)} &
one-point function \\
\Code{A00(\Va)} & \Code{A00C(\Va)} &
coefficient of $g_{\mu\nu}$ \\
\hline
\multicolumn{3}{|l|}{$\Va = m^2$} \\[.5ex]
\multicolumn{3}{|l|}{$\displaystyle
\lower 17pt\hbox{%
\unitlength=1bp%
\begin{picture}(100,40)(20,20)
\Line(20,40)(50,40)
\CArc(70,40)(20,0,360)
\Vertex(50,40){2}
\Text(96,40)[cl]{$m$}
\end{picture}}
= ~\frac{\mu^{4 - D}}{\i\pi^{D/2}\,r_\Gamma}
\int\frac{\text{(numerator)}~\d^D q}{q^2 - m^2}
$} \\[3ex]
\hline
\end{tabular}
\end{center}
\subsection{Two-point functions}
\indextt{Bget}%
\indextt{Bput}%
\indextt{Bputnocache}%
\indextt{B0i}%
\indextt{B0}%
\indextt{B1}%
\indextt{B00}%
\indextt{B11}%
\indextt{B001}%
\indextt{B111}%
\begin{center}
\begin{tabular}{|l|l|l|} \hline
Function call (\Va\ real) & (\Va\ complex) & Description \\ \hline
\Code{B0i(id, \Va)} & \Code{B0iC(id, \Va)} &
two-point tensor coefficient \Code{id} \\
\Code{Bget(\Va)} & \Code{BgetC(\Va)} &
all two-point tensor coefficients \\
\Code{Bput(res,\,\Va)} & \Code{BputC(res,\,\Va)} &
all two-point tensor coefficients \\
\Code{Bputnocache(res,\,\Va)} & \Code{BputnocacheC(res,\,\Va)} &
all two-point tensor coefficients \\
\textit{special cases of \Code{B0i}:} && \\
\Code{B0(\Va)} & \Code{B0C(\Va)} &
scalar two-point function \\
\Code{B1(\Va)} & \Code{B1C(\Va)} &
coefficient of $p_\mu$ \\
\Code{B00(\Va)} & \Code{B00C(\Va)} &
coefficient of $g_{\mu\nu}$ \\
\Code{B11(\Va)} & \Code{B11C(\Va)} &
coefficient of $p_\mu p_\nu$ \\
\Code{B001(\Va)} & \Code{B001C(\Va)} &
coefficient of $g_{\mu\nu} p_\rho$ \\
\Code{B111(\Va)} & \Code{B111C(\Va)} &
coefficient of $p_\mu p_\nu p_\rho$ \\
\hline
\multicolumn{3}{|l|}{$\Va = p^2, m_1^2, m_2^2$} \\[1ex]
\multicolumn{3}{|l|}{$\displaystyle
\lower 29.5pt\hbox{%
\unitlength=1bp%
\begin{picture}(133,65)(10,8)
\ArrowLine(20,40)(50,40)
\ArrowLine(90,40)(120,40)
\CArc(70,40)(20,0,360)
\Vertex(50,40){2}
\Vertex(90,40){2}
\Text(16,38)[cr]{$p$}
\Text(125,38)[cl]{$p$}
\Text(72,63)[bc]{$m_1$}
\Text(72,15)[tc]{$m_2$}
\end{picture}}
= \frac{\mu^{4 - D}}{\i\pi^{D/2}\,r_\Gamma}
\int\frac{\text{(numerator)}~\d^D q}
{\bigl[q^2 - m_1^2\bigr]\,\bigl[(q + p)^2 - m_2^2\bigr]}
$} \\[5ex]
\hline
\end{tabular}
\end{center}
\subsection{Derivatives of Two-point functions}
\indextt{DB0}%
\indextt{DB1}%
\indextt{DB00}%
\indextt{DB11}%
\begin{center}
\begin{tabular}{|l|l|l|} \hline
Function call (\Va\ real) & (\Va\ complex) & Description \\ \hline
\Code{B0i(id, \Va)} & \Code{B0iC(id, \Va)} &
two-point tensor coefficient \Code{id} \\
\Code{Bget(\Va)} & \Code{BgetC(\Va)} &
all two-point tensor coefficients \\
\Code{Bput(res,\,\Va)} & \Code{BputC(res,\,\Va)} &
all two-point tensor coefficients \\
\Code{Bputnocache(res,\,\Va)} & \Code{BputnocacheC(res,\,\Va)} &
all two-point tensor coefficients \\
\textit{special cases of \Code{B0i}:} && \\
\Code{DB0(\Va)} & \Code{DB0C(\Va)} &
derivative of \Code{B0} \\
\Code{DB1(\Va)} & \Code{DB1C(\Va)} &
derivative of \Code{B1} \\
\Code{DB00(\Va)} & \Code{DB00C(\Va)} &
derivative of \Code{B00} \\
\Code{DB11(\Va)} & \Code{DB11C(\Va)} &
derivative of \Code{B11} \\
\Code{DB001(\Va)} & \Code{DB001C(\Va)} &
derivative of \Code{B001} \\
\Code{DB111(\Va)} & \Code{DB111C(\Va)} &
derivative of \Code{B111} \\
\hline
\multicolumn{3}{|l|}{$\Va = p^2, m_1^2, m_2^2$\quad as above} \\
\hline
\end{tabular}
\end{center}
All derivatives are with respect to the momentum squared. Note that
the \Code{B0i}, \Code{Bget}, and \Code{Bput} coefficients include the
derivatives, so there is no \Code{DB0i}, \Code{DBget}, or \Code{DBput}.
\subsection{Three-point functions}
\label{sect:3pt}
\indextt{C0}%
\indextt{C0i}%
\indextt{Cget}%
\indextt{Cput}%
\indextt{C0nocache}%
\begin{center}
\begin{tabular}{|l|l|l|} \hline
Function call (\Va\ real) & (\Va\ complex) & Description \\ \hline
\Code{C0i(id, \Va)} & \Code{C0iC(id, \Va)} &
three-point tensor coefficient \Code{id} \\
\Code{Cget(\Va)} & \Code{CgetC(\Va)} &
all three-point tensor coefficients \\
\Code{Cput(res,\,\Va)} & \Code{CputC(res,\,\Va)} &
all three-point tensor coefficients \\
\Code{C0nocache(res,\,\Va)} & \Code{C0nocacheC(res,\,\Va)} &
scalar three-point function \\
\textit{special case of \Code{C0i}:} && \\
\Code{C0(\Va)} & \Code{C0C(\Va)} &
scalar three-point function \\
\hline
\multicolumn{3}{|l|}{$\Va = p_1^2, p_2^2, (p_1 + p_2)^2, m_1^2, m_2^2, m_3^2$} \\[1ex]
\multicolumn{3}{|l|}{$\displaystyle
\lower 67pt\hbox{%
\unitlength=1bp%
\begin{picture}(150,140)(5,10)
\ArrowLine(20,20)(40,40)
\ArrowLine(20,140)(40,120)
\ArrowLine(136,80)(105,80)
\Line(40,40)(40,120)
\Line(105,80)(40,40)
\Line(40,120)(105,80)
\Vertex(40,40){2}
\Vertex(105,80){2}
\Vertex(40,120){2}
\Text(16,140)[br]{$p_1$}
\Text(141,78)[cl]{$p_2$}
\Text(16,20)[tr]{$p_3$}
\Text(36,80)[cr]{$m_1$}
\Text(75,101)[bl]{$m_2$}
\Text(75,58)[tl]{$m_3$}
\end{picture}}
~~= \frac{\mu^{4 - D}}{\i\pi^{D/2}\,r_\Gamma}
\int\frac{\text{(numerator)}~\d^Dq}
{\begin{aligned}
\bigl[q^2 - &m_1^2\bigr]\,\bigl[(q + p_1)^2 - m_2^2\bigr] \\
& \bigl[(q + p_1 + p_2)^2 - m_3^2\bigr]
\end{aligned}}
$} \\[12ex]
\hline
\end{tabular}
\end{center}
\subsection{Four-point functions}
\indextt{D0}%
\indextt{D0i}%
\indextt{Dget}%
\indextt{Dput}%
\indextt{D0nocache}%
\begin{center}
\begin{tabular}{|l|l|l|} \hline
Function call (\Va\ real) & (\Va\ complex) & Description \\ \hline
\Code{D0i(id, \Va)} & \Code{D0iC(id, \Va)} &
four-point tensor coefficient \Code{id} \\
\Code{Dget(\Va)} & \Code{DgetC(\Va)} &
all four-point tensor coefficients \\
\Code{Dput(res,\,\Va)} & \Code{DputC(res,\,\Va)} &
all four-point tensor coefficients \\
\Code{D0nocache(res,\,\Va)} & \Code{D0nocacheC(res,\,\Va)} &
scalar four-point function \\
\textit{special case of \Code{D0i}:} && \\
\Code{D0(\Va)} & \Code{D0C(\Va)} &
scalar four-point function \\
\hline
\multicolumn{3}{|l|}{$\Va = p_1^2, p_2^2, p_3^2, p_4^2,
(p_1 + p_2)^2, (p_2 + p_3)^2,
m_1^2, m_2^2, m_3^2, m_4^2$} \\[1ex]
\multicolumn{3}{|l|}{$\displaystyle
\lower 61pt\hbox{%
\unitlength=1bp%
\begin{picture}(140,125)(-10,0)
\ArrowLine(5,10)(30,30)
\ArrowLine(5,115)(30,95)
\ArrowLine(120,115)(95,95)
\ArrowLine(120,10)(95,30)
\Line(95,30)(30,30)
\Line(30,30)(30,95)
\Line(30,95)(95,95)
\Line(95,95)(95,30)
\Vertex(30,30){2}
\Vertex(30,95){2}
\Vertex(95,30){2}
\Vertex(95,95){2}
\Text(0,115)[r]{$p_1$}
\Text(125,115)[l]{$p_2$}
\Text(125,7)[l]{$p_3$}
\Text(0,7)[r]{$p_4$}
\Text(25,62)[r]{$m_1$}
\Text(62,100)[b]{$m_2$}
\Text(100,62)[l]{$m_3$}
\Text(62,24)[t]{$m_4$}
\end{picture}}
= \frac{\mu^{4 - D}}{\i\pi^{D/2}\,r_\Gamma}
\int\frac{\text{(numerator)}~\d^Dq}
{\begin{aligned}
\bigl[q^2 &- m_1^2\bigr] \bigl[(q + p_1)^2 - m_2^2\bigr] \\
& \bigl[(q + p_1 + p_2)^2 - m_3^2\bigr] \\
& \bigl[(q + p_1 + p_2 + p_3)^2 - m_4^2\bigr]
\end{aligned}}
$} \\[11ex]
\hline
\end{tabular}
\end{center}
\subsection{Five-point functions}
\indextt{E0}%
\indextt{E0i}%
\indextt{Eget}%
\indextt{Eput}%
\indextt{E0nocache}%
\begin{center}
\begin{tabular}{|l|l|l|} \hline
Function call (\Va\ real) & (\Va\ complex) & Description \\ \hline
\Code{E0i(id, \Va)} & \Code{E0iC(id, \Va)} &
five-point tensor coefficient \Code{id} \\
\Code{Eget(\Va)} & \Code{EgetC(\Va)} &
all five-point tensor coefficients \\
\Code{Eput(res,\,\Va)} & \Code{EputC(res,\,\Va)} &
all five-point tensor coefficients \\
\Code{E0nocache(res,\,\Va)} & \Code{E0nocacheC(res,\,\Va)} &
scalar five-point function \\
\textit{special case of \Code{E0i}:} && \\
\Code{E0(\Va)} & \Code{E0C(\Va)} &
scalar five-point function \\
\hline
\multicolumn{3}{|l|}{$\begin{aligned}
\Va = p_1^2, p_2^2, p_3^2, p_4^2, p_5^2,
(p_1 + p_2)^2, (p_2 + p_3)^2, (p_3 + p_4)^2,
(p_4 + p_5)^2, (&p_5 + p_1)^2, \\
&m_1^2, m_2^2, m_3^2, m_4^2, m_5^2
\end{aligned}$} \\
\multicolumn{3}{|l|}{$\displaystyle
\lower 95pt\hbox{%
\unitlength=1bp%
\begin{picture}(160,152)(-10,-5)
\Line(70.,40.)(108.042,67.6393)
\ArrowLine(70.,12.)(70.,40.)
\Line(108.042,67.6393)(93.5114,112.361)
\ArrowLine(134.672,58.9868)(108.042,67.6393)
\Line(93.5114,112.361)(46.4886,112.361)
\ArrowLine(109.969,135.013)(93.5114,112.361)
\Line(46.4886,112.361)(31.9577,67.6393)
\ArrowLine(30.0306,135.013)(46.4886,112.361)
\Line(31.9577,67.6393)(70.,40.)
\ArrowLine(5.32816,58.9868)(31.9577,67.6393)
\Vertex(70.,40.){2}
\Vertex(108.042,67.6393){2}
\Vertex(93.5114,112.361){2}
\Vertex(46.4886,112.361){2}
\Vertex(31.9577,67.6393){2}
\Vertex(70.,40.){2}
\Text(26,140)[r]{$p_1$}
\Text(116,140)[l]{$p_2$}
\Text(140,55)[l]{$p_3$}
\Text(70,7)[t]{$p_4$}
\Text(0,55)[r]{$p_5$}
\Text(35,92)[r]{$m_1$}
\Text(70,118)[b]{$m_2$}
\Text(105,92)[l]{$m_3$}
\Text(100,50)[t]{$m_4$}
\Text(40,50)[t]{$m_5$}
\end{picture}}
= \frac{\mu^{4 - D}}{\i\pi^{D/2}\,r_\Gamma}
\int\frac{\text{(numerator)}~\d^Dq}
{\begin{aligned}
\bigl[q^2 &- m_1^2\bigr] \bigl[(q + p_1)^2 - m_2^2\bigr] \\
& \bigl[(q + p_1 + p_2)^2 - m_3^2\bigr] \\
& \bigl[(q + p_1 + p_2 + p_3)^2 - m_4^2\bigr] \\
& \bigl[(q + p_1 + p_2 + p_3 + p_4)^2 - m_5^2\bigr]
\end{aligned}}
$} \\[11ex]
\hline
\end{tabular}
\end{center}
\subsection{Tensor Functions}
\index{cache}%
\index{tensor functions}%
The ``\Code{$N$0i}'' functions (\Code{B0i}, \Code{C0i}, etc.) are generic
functions for all tensor coefficients of the respective $N$-point
function. A specific coefficient is selected with the first argument
(denoted \Code{id} in the following). For example:
$$
\begin{aligned}
\text{\Code{C0i(cc0,\,\dots)}} &= C_0(\ldots) \\
\text{\Code{C0i(cc00,\,\dots)}} &= C_{00}(\ldots) \\
\text{\Code{C0i(cc112,\,\dots)}} &= C_{112}(\ldots) \qquad \text{etc.}
\end{aligned}
$$
The indices are symmetric and therefore the identifiers are assumed to be
ordered, \ie there is only \Code{cc122} but not \Code{cc212}.
\index{cache}%
Internally, what happens when an \Code{$N$0i} is called is that actually
\textit{all} $N$-point coefficients for the given set of momenta and
masses are calculated. This is because there are a lot of intermediate
results which would have to be recalculated every time the function is
called for a different coefficient. These coefficients are then of course
stored so that repeated calls to \Code{$N$0i} with the same set of
arguments will simply retrieve the value from memory. So in a very real
sense the identifiers \Code{cc0}, \Code{cc001}, etc.\ can be thought of
as array indices (in fact, they are just integer constants to the compiler).
In an unoptimized program, the savings incurred by this mechanism can be
sizeable: typically 90\% of integrals requested can be retrieved from cache.
The ``\Code{$N$get}'' functions (\Code{Bget}, \Code{Cget}, etc.) compute
all $N$-point coefficients together. Their use is slightly more
involved (one needs to keep track of an extra index) but results in
faster code since only one cache lookup is needed, and not one for every
coefficient.
The ``\Code{$N$put$[$nocache$]$}'' subroutines (\Code{Aput},
\Code{Bput}, etc.) have the same functionality as the \Code{$N$get}
functions but allow the user control over the storage location, \ie the
first argument is a complex array of dimension \Code{Nbb}, \Code{Ncc},
\dots\ into which the coefficients are stored. This can be important
\eg for parallel execution.
\subsection{Cache Mechanism}
\index{cache}%
\index{internal heap}%
\index{flushing the cache}%
\index{reset heap}
The cache functionality of \LT\ has already been alluded to above
and for small calculations, the cache is just transparent to the user.
In large calculations, however, it is worthwhile to flush the cache
at strategic places, to reduce lookup times and avoid memory overflows.
For example, when computing a cross-section in a loop over the energy,
it makes sense to flush the cache every time one moves to another
energy. Most loop integrals depend on the energy (and the few that
don't are not very time-consuming to compute), so chances are slim
that any of the cache integrals can be recycled.
Cache memory is actually never really `freed' but only marked as
overwritable. This is because, in a setup like above, every turn
of the loop computes exactly the same number of integrals, so freeing
and re-allocating the memory would just produce additional overhead.
There are two ways to clear the cache. To completely remove all
integrals from the cache, execute
\begin{verbatim}
call clearcache (Fortran)
clearcache(); (C/C++)
ClearCache[] (Mathematica)
\end{verbatim}
Alternately, the current cache pointers can be stored using
\begin{verbatim}
call markcache (Fortran)
markcache(); (C/C++)
MarkCache[] (Mathematica)
\end{verbatim}
and restored, at a later point, using
\begin{verbatim}
call restorecache (Fortran)
restorecache(); (C/C++)
RestoreCache[] (Mathematica)
\end{verbatim}
One can for example do the energy-independent integrals first,
mark the cache, and restore it after every turn of the loop
over the energy.
Another issue concerns the depth of the comparison when looking up cache
entries. Floating-point variables should in general never be compared
verbatim, \ie one should always convert \Code{\Va\,.eq.\,\Vb} into
\Code{abs(\Va\,-\,\Vb)\,.lt.\,$\varepsilon$}, because one does not want
the comparison to fail due to numerical noise.
For technical reasons, the cache-lookup precision is specified through
the number of bits (rather than an $\varepsilon$) in \LT:
\begin{alltt}
call setcmpbits(\(b\)) \(b\) = getcmpbits() (Fortran)
setcmpbits(\(b\)); \(b\) = getcmpbits(); (C/C++)
SetCmpBits[\(b\)] \(b\) = GetCmpBits[] (Mathematica)
export LTCMPBITS=\(b\) (bash)
setenv LTCMPBITS \(b\) (tcsh)
\end{alltt}
\indextt{setcmpbits}%
\indextt{getcmpbits}%
\indextt{LTCMPBITS}%
The defaults are 62 for double precision (a double precision number has
64 bits of which 52 are the mantissa) and 64 for quadruple precision
(a quadruple precision number has 128 bits of which 112 are the mantissa).
\subsection{Extended Precision}
For most calculations, double precision is quite sufficient to yield
satisfyingly accurate results. In some cases, however, cancellations
between diagrams can cause double-digit loss of precision. Since the
mantissa of a double precision number has only about 15 decimal digits,
the result may thus be correct only to very few digits.
Quadruple precision (16-byte real and 32-byte complex variables) has a
mantissa of approximately 33 decimal digits and can cope much more
severe cancellations. Quadruple precision does slow down the
calculation, though, and is also not available on all platforms.
To build the quadruple-precision version, configure with the \Code{--quad}
option, \ie
\begin{verbatim}
./configure --quad
\end{verbatim}
The resulting libraries and executables carry the suffix \Code{-quad},
\eg \Code{libooptools-quad.a}.
As an intermediate solution -- more precise than double but faster than
quadruple precision -- the \Code{--real10} flag may be added:
\begin{verbatim}
./configure --quad --real10
\end{verbatim}
This uses \Code{REAL*10} for extended precision, which is implemented in
hardware on the x86 platform, though presently only available in gfortran 4.6+.
For other compilers the extended precision type silently reverts to
\Code{REAL*16}.
\subsection{Versions and Debugging}
\label{sect:versions}
For checking the results, \LT\ has alternate implementations of various
functions included, most of which are based on an implementation by Denner.
The user can choose at run-time whether the default version `a' (mostly \FF)
or the alternate version `b' (mostly Denner) is used and whether checking
is performed. This is determined by the version key:
\begin{tabbing}
\Code{~~~0*key}\qquad \= compute version `a', \\
\Code{~~~1*key} \> compute version `b', \\
\Code{~~~2*key} \> compute both, compare, return `a', \\
\Code{~~~3*key} \> compute both, compare, return `b'.
\end{tabbing}
Usage is as in
\begin{alltt}
call setversionkey(\(k\)) \(k\) = getversionkey() (Fortran)
setversionkey(\(k\)); \(k\) = getversionkey(); (C/C++)
SetVersionKey[\(k\)] \(k\) = GetVersionKey[] (Mathematica)
export LTVERSION=\(k\) (bash)
setenv LTVERSION \(k\) (tcsh)
\end{alltt}
\indextt{setversionkey}%
\indextt{getversionkey}%
\indextt{LTVERSION}%
where $k$ is \eg of the form \Code{2*KeyC0 + 3*KeyD0}. The following
keys for alternate versions are currently available: \Code{KeyA0},
\Code{KeyBget}, \Code{KeyC0}, \Code{KeyD0}, \Code{KeyEget},
\Code{KeyEgetC}. \Code{KeyAll} comprises all of these. These
symbols are not available in the shell, therefore it is most common
to set all bits of the version key by putting the value $-1$.
The comparison by default takes a relative deviation of
$10^{-12}$ as a threshold for issuing warnings but this can
be changed with
\begin{alltt}
call setmaxdev(\(\varepsilon\)) \(\varepsilon\) = getmaxdev() (Fortran)
setmaxdev(\(\varepsilon\)); \(\varepsilon\) = getmaxdev(); (C/C++)
SetMaxDev[\(\varepsilon\)] \(\varepsilon\) = GetMaxDev[] (Mathematica)
export LTMAXDEV=\(\varepsilon\) (bash)
setenv LTMAXDEV \(\varepsilon\) (tcsh)
\end{alltt}
\indextt{setmaxdev}%
\indextt{getmaxdev}%
\indextt{LTMAXDEV}%
\index{cross-checks}
Debugging output can be turned on likewise with \eg
\begin{alltt}
call setdebugkey(\(k\)) \(k\) = getdebugkey() (Fortran)
setdebugkey(\(k\)); \(k\) = getdebugkey(); (C/C++)
SetDebugKey[\(k\)] \(k\) = GetDebugKey[] (Mathematica)
export LTDEBUG=\(k\) (bash)
setenv LTDEBUG \(k\) (tcsh)
\end{alltt}
\indextt{setdebugkey}%
\indextt{getdebugkey}%
\indextt{LTDEBUG}%
where $k$ is \eg of the form \Code{DebugC + DebugD}. Identifiers range
from \Code{DebugB} to \Code{DebugE} and are summarized by \Code{DebugAll}.
Again, these identifiers are not available in the shell, so the most
common solution is to set all bits by choosing $-1$.
The integrals are listed in the output with a unique serial number.
If the list of integrals becomes too long, one can select only a range
of serial numbers for viewing, as in
\begin{alltt}
call setdebugrange(\(f\), \(t\)) (Fortran)
setdebugrange(\(f\), \(t\)); (C/C++)
SetDebugRange[\(f\), \(t\)] (Mathematica)
export LTRANGE=\(f\)-\(t\) (bash)
setenv LTRANGE \(f\)-\(t\) (tcsh)
\end{alltt}
\indextt{setdebugrange}%
\indextt{LTRANGE}%
This makes it easy to monitor `suspicious' integrals.
\subsection{On Warning Messages and Checking Results}
Computing reliable numeric values for the one-loop integrals is a highly
non-trivial task because of possible cancellations, and requires to take
into account many special cases to achieve a reasonable accuracy also in
``problematic'' corners of phase space. Such regions are typically
thresholds and high energies.
\LT\ is built on the \FF\ library which tries very hard to produce correct
values. Nevertheless, it is essential to have means of cross-checking the
results, particularly if such tell-tale signs of numerical problems as
unsmoothness of a curve (\eg unexpected bumps or peaks in the
cross-section) are observable.
\index{warning messages}%
\index{error messages}%
\index{FF@\FF}%
\FF\ has a built-in warning system that checks for critical loss of
accuracy. Unfortunately, the warnings issued by \FF\ concerning the loss
of accuracy are somewhat overzealous, and particularly for a large number
of consecutive calls to \FF\ (\eg when computing a cross-section over a
sizeable region of phase space) can add up to ridiculous numbers, \eg
``lost a factor $10^5$.'' Unless a very detailed checking of these
warnings is performed, they are pretty useless and tend to numb the user
to a degree where severe errors are easily overlooked. For this reason,
the \FF\ warning system has largely been disabled in \LT.
\FF\ does report the estimated number of digits lost, however, on which
\LT\ acts as follows:
\begin{itemize}
\item If more than the Warning Digits (default: 9) are lost, a
more thorough version of the integral is used (which uses \eg
different permutations of the input arguments). The Warning Digits
can be set as follows:
\begin{alltt}
call setwarndigits(\(d\)) \(d\) = getwarndigits() (Fortran)
setwarndigits(\(d\)); \(d\) = getwarndigits(); (C/C++)
SetWarnDigits[\(d\)] \(d\) = GetWarnDigits[] (Mathematica)
export LTWARN=\(d\) (bash)
setenv LTWARN \(d\) (tcsh)
\end{alltt}
\indextt{setwarndigits}%
\indextt{LTWARN}%
\item If in the end more than the Error Digits (default: 100) are reported
lost, \LT\ invokes the alternate version (see Sect.~\ref{sect:versions}).
The Error Digits are set via
\begin{alltt}
call seterrdigits(\(d\)) \(d\) = geterrdigits() (Fortran)
seterrdigits(\(d\)); \(d\) = geterrdigits(); (C/C++)
SetErrDigits[\(d\)] \(d\) = GetErrDigits[] (Mathematica)
export LTERR=\(d\) (bash)
setenv LTERR \(d\) (tcsh)
\end{alltt}
\indextt{seterrdigits}%
\indextt{LTERR}%
\end{itemize}
\subsection{Ultraviolet, Infrared, and Collinear Divergences}
\paragraph{Ultraviolet divergences} are regularized dimensionally in
\LT. They originate from the scalar integrals $A_0$ and $B_0$ and from
there are passed on to certain tensor coefficients. UV-divergent loop
integrals contain the combination $1/\varepsilon - \gamma_{\rm E} + \log
4\pi$, of which \LT\ puts the actual divergence into the
$\varepsilon^{-1}$ component of the result (but see \Code{setuvdiv}
below) and substitutes the finite part by $\Delta$. The dimensionful
parameter $\mu$ is introduced to keep the integral's mass dimension the
same in all dimensions $D$ (see Sect.\ \ref{sect:loopint}).
\index{UV-regularization parameters}%
The default value for $\Delta$ is 0, the $\overline{\text{MS}}$ value.
Putting $\Delta = -2$ reproduces the one-loop functions of constrained
differential renormalization as published in \cite{dACTP98}. $\Delta$
is a redundant parameter since $\mu$ can be adjusted to have the same
effect: $\mu^2_{\text{new}} = {\rm e}^\Delta\mu^2_{\text{old}}$.
\index{MS@$\overline{\text{MS}}$}%
A UV-finite result must not depend on either $\Delta$ or $\mu$, hence
it is straightforward to check the cancellation of the divergences
numerically: calculate the expression with two different values for
$\Delta$ (or $\mu$, or both), and check whether the result stays the
same within numerical precision. Note that $\mu$ enters
logarithmically; this means that to decisively check whether an
expression is really independent of $\mu$, it must be varied on a large
scale, \eg from 1 to $10^{10}$.
\paragraph{Infrared divergences} appear in processes with charged
external particles. They originate from the exchange of virtual
massless particles between on-shell legs. More precisely they come from
diagrams containing structures of the form
\begin{center}
\begin{picture}(130,125)(0,0)
\Line(5,10)(30,30)
\Line(30,30)(100,30)
\Vertex(30,30){2}
\Photon(30,30)(30,95){-2}{4.5}
\Line(30,95)(5,115)
\Line(30,95)(100,95)
\Vertex(30,95){2}
\multiput(100,44)(0,17){3}{\makebox(0,0){$.$}}
\Text(0,115)[r]{$k_i$}
\Text(0,7)[r]{$k_j$}
\Text(23,62)[r]{$\gamma$}
\Text(65,62)[]{loop}
\Text(65,25)[t]{$m_{j-1}^2=k_j^2$}
\Text(65,100)[b]{$m_i^2=k_i^2$}
\end{picture}
\end{center}
Such diagrams are IR divergent because the photon is massless; if the
photon had a mass $\lambda$, the divergent terms would be proportional
to $\log\lambda$. NB: such a photon mass should \emph{not be introduced
by hand:} if a requested integral is IR divergent, \LT\ automatically
substitutes regularization parameters (see below).
In QCD calculations, the custom is rather to regularize the IR
divergences dimensionally, in which case they show up as poles in
$1/\varepsilon$ and $1/\varepsilon^2$.
\index{IR-regularization parameters}%
\begin{itemize}
\item
For $\lambda^2 > 0$, photon-mass regularization is used with a photon
mass $\lambda$, where $\lambda$ is treated as an infinitesimal quantity,
however, which means that terms of order $\lambda$ or higher are
discarded (\ie only the $\log\lambda$ terms are kept).
Since the final result should not depend on $\lambda$ after successful
removal of the IR divergences, $\lambda$ can be given an arbitrary
numerical value despite its infinitesimal character.
To test IR finiteness numerically, one can proceed just as in the
ultraviolet case: calculate the expression for two values of $\lambda$
and check whether the results agree. As mentioned, the
$\lambda$-dependence is logarithmic, hence one has to change $\lambda$
on a big scale (say from 1 to $10^{10}$) to decisively check IR
finiteness.
\item
In dimensional regularization, $\lambda^2 = -2$ returns the coefficient
of $\varepsilon^{-2}$, $\lambda^2 = -1$ the coefficient of
$\varepsilon^{-1}$, and $\lambda^2 = 0$ the finite piece.
In this case, testing IR finiteness numerically proceeds through
checking the coefficients of $\varepsilon^{-1}$, $\varepsilon^{-2}$
coefficients, which have to add up to zero in observable quantities.
This can be done particularly conveniently through the \Code{LTLAMBDA}
environment variable (see below), such that no recompilation of the
program is necessary.
While a non-positive value of $\lambda$ immediately affects the
functions returning complex values (\Code{$N$0i} and special cases) it
has no impact on the output of the functions returning the full set of
tensor coefficients (\Code{$N$get}, \Code{$N$put}). Rather, the sets
contain all three $\varepsilon$-coefficients to start with, for example
\begin{verbatim}
i = Bget(...)
e0coeff = Bval(bb0,i)
e1coeff = Bval(bb0+1,i)
e2coeff = Bval(bb0+2,i)
\end{verbatim}
The index 0, 1, 2 corresponding to the current value of $\lambda^2$ can
be obtained with the \Code{getepsi} function.
\end{itemize}
\paragraph{Collinear singularities} arise for vanishing momentum-square
of an external leg sandwiched between two massless internal propagators,
as in:
\begin{center}
\begin{picture}(115,90)(0,10)
\Gluon(10,100)(60,50){-4}{6}
\Line(10,0)(60,50)
\Line(60,50)(110,50)
\Vertex(60,50){2}
\multiput(10,13)(0,14){6}{\makebox(0,0){$.$}}
\Text(70,55)[bl]{$p_i^2 = m_f^2\ll s$}
\Text(35,84)[bl]{$m_1 = 0$}
\Text(35,22)[tl]{$m_2 = 0$}
\end{picture}
\end{center}
The divergence is logarithmic of the form $\log m_f^2/s$, so the
fermion mass acts as a natural regulator. In sufficiently inclusive
observables, these logs cancel due to the Kinoshita--Lee--Nauenberg
theorem \cite{KLN}. In non-confined theories, for example the
electroweak Standard Model, it is possible to observe non-inclusive
observables where the large effects due to small fermion masses can
be seen.
In QCD it is again customary to regularize the collinear divergences
dimensionally, such that instead of large logs the divergences manifest
themselves as poles in $1/\varepsilon$ and $1/\varepsilon^2$.
\begin{itemize}
\item
For dimensional regularization (QCD), the collinear divergences are
controlled in the same way as the IR divergences above: setting
$\lambda^2 = -2, -1, 0$ returns the coefficients of $\varepsilon^{-2}$,
$\varepsilon^{-1}$, and the finite piece, respectively.
\item
To facilitate mass regularization, \LT\ acts on the variable \mmin\ in
the following way: On calling a loop integral, all arguments less than
\mmin\ are set to zero. If it is discovered that the function truncated
thus has a collinear divergence, \mmin\ is substituted back into the
$p_i^2$. This procedure makes it possible for \LT\ to use the regulator
mass only in actually divergent configurations and avoid numerical
problems due to small finite masses elsewhere.
\end{itemize}
\paragraph{The following routines} allow to set and retrieve the
regularization parameters. Note that $\mu$, $\lambda$, and $m_{\text{min}}$
always enter squared.
\begin{alltt}
call setdelta(\(\Delta\)) \(\Delta\) = getdelta() (Fortran)
call setmudim(\(\mu\sp2\)) \,\(\mu\sp2\) = getmudim()
call setlambda(\(\lambda\sp2\)) \,\(\lambda\sp2\) = getlambda()
call setminmass(\(\mmin\)) \,\(\mmin\) = getminmass()
\end{alltt}
\begin{alltt}
setdelta(\(\Delta\)); \(\Delta\) = getdelta(); (C/C++)
setmudim(\(\mu\sp2\)); \,\(\mu\sp2\) = getmudim();
setlambda(\(\lambda\sp2\)); \,\(\lambda\sp2\) = getlambda();
setminmass(\(\mmin\)); \,\(\mmin\) = getminmass();
\end{alltt}
\begin{alltt}
SetDelta[\(\Delta\)] \(\Delta\) = GetDelta[] (Mathematica)
SetMudim[\(\mu\sp2\)] \,\(\mu\sp2\) = GetMudim[]
SetLambda[\(\mu\sp2\)] \,\(\lambda\sp2\) = GetLambda[]
SetMinMass[\(\mmin\)] \,\(\mmin\) = GetMinMass[]
\end{alltt}
\begin{alltt}
export LTDELTA=\(\Delta\) \,(bash)
export LTMUDIM=\(\mu\sp2\)
export LTLAMBDA=\(\lambda\sp2\)
export LTMINMASS=\(\mmin\)
\end{alltt}
\begin{alltt}
setenv LTDELTA \(\Delta\) \,(tcsh)
setenv LTMUDIM \(\mu\sp2\)
setenv LTLAMBDA \(\lambda\sp2\)
setenv LTMINMASS \(\mmin\)
\end{alltt}
\indextt{setdelta}%
\indextt{getdelta}%
\indextt{LTDELTA}%
\indextt{setmudim}%
\indextt{getmudim}%
\indextt{LTMUDIM}%
\indextt{setlambda}%
\indextt{getlambda}%
\indextt{LTLAMBDA}%
\indextt{setminmass}%
\indextt{getminmass}%
\indextt{LTMINMASS}%
If $\lambda^2\leqslant 0$ was chosen, the $\varepsilon^{-1}$ component
of the results contains both UV and IR divergences, sometimes denoted
$1/\varepsilon_{\text{UV}}$ and $1/\varepsilon_{\text{IR}}$. The UV
part can be switched off ($x = 0$) and on ($x = 1$) with
\begin{alltt}
call setuvdiv(\(x\)) (Fortran)
setuvdiv(\(x\)); (C/C++)
SetUVDiv[\(x\)] (Mathematica)
export LTUVDIV=\(x\) (bash)
setenv LTUVDIV \(x\) (tcsh)
\end{alltt}
Note that $x$ is a real argument, not an integer one, as in:
\Code{call setuvdiv(1D0)}.
\subsection{Accuracy}
In rare cases the user may want to set the following accuracy thresholds.
\begin{itemize}
\item A given quantity $x$ is tested for zero by $|x| < \zeroeps$. The
comparator $\zeroeps$ has the default value $10^{-22}$ and can be set
through
\begin{alltt}
call setzeroeps(\(\zeroeps\)) (Fortran)
setzeroeps(\(\zeroeps\)); (C/C++)
SetZeroEps[\(\zeroeps\)] (Mathematica)
export LTZEROEPS=\(\zeroeps\) (bash)
setenv LTZEROEPS \(\zeroeps\) (tcsh)
\end{alltt}
\item Two quantities $x$ and $y$ are tested for equality by
$|x - y| < \diffeps$, where $\diffeps$ has the default value $10^{-12}$
and can be set through
\begin{alltt}
call setdiffeps(\(\diffeps\)) (Fortran)
setdiffeps(\(\diffeps\)); (C/C++)
SetDiffEps[\(\diffeps\)] (Mathematica)
export LTDIFFEPS=\(\diffeps\) (bash)
setenv LTDIFFEPS \(\diffeps\) (tcsh)
\end{alltt}
In particular in conjunction with phase-space generators the detection
of \eg $p^2 = m^2$ may fail with the default $\diffeps$ due to rounding
errors in the generation of $p$.
\end{itemize}
\section{Using \LT\ with Fortran}
\label{sect:fortran}
\index{Fortran}%
\index{command line@command line}%
\index{environment variable}%
Some technical details concerning compilation:
\begin{itemize}
\item Specify the location of \LT\ once in an environment variable (this
saves a lot of typing later on). For example, in the \Code{tcsh}, use
\begin{verbatim}
setenv LT $HOME/LoopTools/(hosttype)
\end{verbatim}
When compiling a program that uses \LT, use
\begin{verbatim}
-I$LT/include (source files) -L$LT/lib -looptools
\end{verbatim}
on the command line. As Unix linker are one-pass linkers, the library
flags (\Code{-L...}, \Code{-l...}) must come after the Fortran or object
files on the command line. In a makefile, you have to use parentheses
around the environment variables, \ie \Code{\$(LT)} instead of
\Code{\$LT}.
\index{C preprocessor}%
\item Fortran files that use \LT\ must have the extension \Code{.F}, not
\Code{.f}. This tells the Fortran compiler that the files need to be run
through the C preprocessor first.
\indextt{RealType}%
\indextt{ComplexType}%
\item The user may wish to use \Code{RealType} instead of \Code{double
precision} and \Code{ComplexType} instead of \Code{double complex}.
These types are declared in \Code{looptools.h}, they are
preprocessor-friendly (one word) and make it easier to switch \eg to
quadruple precision.
\end{itemize}
\indextt{looptools.h}%
\indextt{ltini}%
\indextt{ltexi}%
\index{summary of errors}%
To use the \LT\ functions in a Fortran program, the file
\Code{looptools.h} must be included in every function or subroutine
in which the \LT\ functions are called.
Before using any \LT\ function, the subroutine \Code{ltini} must be
called. At the end of the calculation \Code{ltexi} may be called to
obtain a summary of errors.
A very elementary program would for instance be
\begin{verbatim}
program simple_program
implicit none
#include "looptools.h"
call ltini
print *, B0(1000D0, 50D0, 80D0)
call ltexi
end
\end{verbatim}
Note that, as for all preprocessor commands, the \Code{\#} must stand at
the beginning of the line. It is important to include the
\Code{looptools.h} via the preprocessor command {\tt\#include} instead of
the \Code{include} directive many Fortran compilers offer. This is because
preprocessor variables are used in \Code{looptools.h} which would otherwise
not take effect. Incidentally, if you do run this program, the result
should be \Code{(-4.40593283,2.7041431)}.
\index{Higgs self-energy}%
To give a more realistic example, here is the calculation of the
bosonic part of the Higgs self-energy in the electroweak Standard Model.
\begin{verbatim}
program HiggsSE
implicit none
#include "looptools.h"
RealType s
ComplexType SigmaH
external SigmaH
call ltini
do s = 100, 1000, 50
print *, s, " ", SigmaH(s)
enddo
call ltexi
end
ComplexType function SigmaH(k2)
RealType k2
#include "looptools.h"
RealType MH2, MZ2, MW2, Alfa, pi, SW2
parameter (MH2 = 126D0**2,
& MZ2 = 91.188D0**2, MW2 = 80.39D0**2,
& Alfa = 1/137.0359895D0,
& pi = 3.14159265358979D0,
& SW2 = 1 - MW2/MZ2)
SigmaH = Alfa/(32*pi*SW2*MW2)*
& ( 3*MH2*A0(MH2) + 9*MH2**2*B0(k2, MH2, MH2)
& + 2*(MH2**2 - 4*MW2*(k2 - 3*MW2))*B0(k2, MW2, MW2)
& + 2*(6*MW2 + MH2)*A0(MW2) - 24*MW2**2
& + (MH2**2 - 4D0*MZ2*(k2 - 3*MZ2))*B0(k2, MZ2, MZ2)
& + (6*MZ2 + MH2)*A0(MZ2) - 12*MZ2**2 )
end
\end{verbatim}
\section{Using \LT\ with C/C++}
\index{C++}%
\index{c++ command line@\Code{c++} command line}%
Some technical details:
\begin{itemize}
\item Like in the Fortran case, it saves a lot of typing to specify the
location of \LT\ once in an environment variable. For example, in the
\Code{tcsh}, use
\begin{verbatim}
setenv LT $HOME/LoopTools/(hosttype)
\end{verbatim}
Then compile the programs that use \LT\ with the following command:
\begin{verbatim}
$LT/bin/fcc -I$LT/include (source files) -L$LT/lib -looptools
\end{verbatim}
\Code{fcc} is a script to compile C and C++ programs and link them with
Fortran libraries, in this case \Code{libooptools.a}. Note that in a
makefile, you have to use parentheses around the environment variables,
\ie \Code{\$(LT)} instead of \Code{\$LT}.
\indextt{RealType}%
\indextt{ComplexType}%
\item The \Code{RealType} and \Code{ComplexType} types declared by
\Code{clooptools.h} help produce code valid for both C and C++. The
latter maps to \Code{std::complex<double>} in C++, \Code{double complex}
in C99, and \Code{struct \lbrac\ double re, im; \rbrac} in C89.
\end{itemize}
To use the \LT\ functions in a C/C++ program, the file
\Code{clooptools.h} must be included. Similar to the Fortran case,
before making the first call to any \LT\ function, \Code{ltini()} must
be called and at the end \Code{ltexi()} may be called to get a summary
of errors.
In C++, an elementary program would be
{\samepage
\begin{verbatim}
#include <iostream>
#include "clooptools.h"
int main() {
ltini();
cout << B0(1000., 50., 80.) << endl;
ltexi();
}
\end{verbatim}}
In the following the same example as for the Fortran case is given: the
bosonic part of the Higgs self-energy in the electroweak Standard Model.
This code is given in C syntax though it compiles also with C++ thanks
to the \Code{ComplexType} data type (a true C++ aficionado would eschew
the use of stdio, however).
\begin{verbatim}
#include <stdio.h>
#include "clooptools.h"
#define MH2 (126.*126.)
#define MZ2 (91.188*91.188)
#define MW2 (80.4*80.4)
#define Alfa (1./137.0359895)
#define pi 3.14159265358979
#define SW2 (1. - MW2/MZ2)
static ComplexType SigmaH(double k2) {
return Alfa/(32*pi*SW2*MW2)*
( 3*MH2*A0(MH2) + 9*MH2*MH2*B0(k2, MH2, MH2)
+ 2*(MH2*MH2 - 4*MW2*(k2 - 3*MW2))*B0(k2, MW2, MW2)
+ 2*(6*MW2 + MH2)*A0(MW2) - 24*MW2*MW2
+ (MH2*MH2 - 4*MZ2*(k2 - 3*MZ2))*B0(k2, MZ2, MZ2)
+ (6*MZ2 + MH2)*A0(MZ2) - 12*MZ2*MZ2 );
}
int main() {
RealType s;
ltini();
for( s = 100; s <= 1000; s += 50 ) {
ComplexType sig = SigmaH(s);
printf("%g\t%g%+gi\n", s, Re(sig), Im(sig));
}
ltexi();
}
\end{verbatim}
\section{Using \LT\ with \mma}
\index{Mathematica@\mma}%
\index{setting the path}%
Modify your path to include \Code{\home/LoopTools/(hosttype)/bin}, \eg in
\Code{tcsh} use
\begin{verbatim}
set path=($path $HOME/LoopTools/(hosttype)/bin)
\end{verbatim}
It is probably a good idea to include this statement \eg in \Code{.cshrc}.
\indextt{Install}%
\indextt{LoopTools}%
The \mma\ interface is probably the simplest to use:
\begin{verbatim}
In[1]:= Install["LoopTools"]
Out[1]= LinkObject[LoopTools, 1, 1]
In[2]:= B0[1000, 50, 80]
Out[2]= -4.40593 + 2.70414 I
\end{verbatim}
\indextt{Cget}%
\indextt{Dget}%
The \Code{$N$get} routines return a list of rules containing all tensor
coefficients, \eg
\begin{verbatim}
In[3]:= Cget[80, 80, 10000, 300, 100, 200] //InputForm
Out[3]//InputForm=
{cc0 -> 0.0003683322958259527 - 0.00144304878124425*I,
cc1 -> 0.00003691991146686607 + 0.0008063637675463306*I,
cc2 -> -0.0002186870966525929 + 0.0003255577507551812*I,
cc00 -> -1.468122864600498 + 0.6620214671984382*I,
cc11 -> -0.0001383963649940767 - 0.0005211388919006447*I,
cc12 -> 0.00005607420875500784 - 0.0001466442566605745*I,
cc22 -> 0.0001038232033882128 - 0.0001572866825209231*I,
cc001 -> 0.4339544374355454 - 0.1905346035793642*I,
cc002 -> 0.5179247985708856 - 0.2390535391455292*I,
cc111 -> 0.0001637407816195954 + 0.0003561351446381443*I,
cc112 -> -0.00001499429891688691 + 0.00008510756809075344*I,
cc122 -> -0.00002351641063613291 + 0.00005055502592614985*I,
cc222 -> -0.00005956786867352272 + 0.000101962969539097*I}
\end{verbatim}
One-loop functions containing non-numeric arguments (\eg
\Code{B0[1000,\,MW2,\,MW2]}) remain unevaluated. If it becomes necessary
to switch off the evaluation of the \LT\ functions, \Code{LoopTools} can
be uninstalled:
\begin{verbatim}
In[10^37]:= Uninstall[%1]
\end{verbatim}
\begin{appendix}
\chapter{The original \FF\ Manual}
\newcommand\comp{\tt}
\newcommand\ms{\,\mbox{ms}}
% #[ Introduction:
\section{Introduction}
The evaluation of scalar loop integrals is one of the time consuming parts
of radiative correction computations in high energy physics. Of course the
general solution has long been known \cite{tHV79}, but the use of
these formulae is not straightforward. If one encodes the algorithms
directly in a numerical language one finds that for most physical
configurations the answer is extremely unreliable due to numerical
cancellations. It is not at all difficult to find examples where more
than 80 digits accuracy are lost.
There are two ways in which these problems have been solved. M.~Veltman has
programmed these algorithms using a very large precision (up to 120 digits)
for the intermediate results in the program FormF\null, which enabled him to
do some very complicated calculations \cite{PaV79}. However,
these routines are written in assembler language and thus only available on
certain computers. Also, the use of multiple precision makes them fairly slow
--- and even so there are many (soft t-channel) configurations for which the
answer is incorrect, or correct only for one permutation of the input
parameters. The other solution is to evaluate by hand all special cases
needed and make sure that these are numerically stable, in this way building a
library of physically interesting cases. This costs much time and has to be
extended for every new calculation, as often the limits taken are no longer
valid.
We present here a set of Fortran routines that evaluate the one-loop scalar
integrals using a standard precision. The algorithms used have been published
before \cite{vOV90}. This paper describes version 1.0 which contains
the following units:
\begin{itemize}
\item the scalar one, two, three, four and five-point functions, defined by
\begin{equation}
X_0 = \frac{1}{i\pi^2} \int \!\!\frac{d^n Q}{(Q^2 - m_1^2)((Q+P)^2 - m_2^2)\cdots}
\end{equation}
\item the vector three and four-point functions,
\item some determinants.
\end{itemize}
Planned additions are:
\begin{itemize}
\item The other Form factors \`{a} la FormF.
\item The six-point function.
\end{itemize}
Note however, that the reduction of these can be done analytically.
The aim of the routines is to provide a reliable answer for any conceivable
(physical) combination of input parameters. This has not been fully met in
the case of the four-point function, but an impressive list of cases does
indeed work. Problems normally occur when many parameters are (almost)
equal, i.e.\ when an analytical calculation is most feasible.
The layout of this paper is as follows. First we give a brief description of
the design of the package and some details that may be of of relevance to the
user, like timings. Next we give a complete user's guide. The problems which
might be encountered when installing FF on a computer system are discussed in
section \ref{sc:installation}. The initialisation of the routines, which has
to be done by the user in the program which uses the FF routines, is outlined
in section \ref{sc:initialization}. The next section is about the use of the
error reporting facilities, which also need some assistance from the user. A
list of the available routines for the scalar n-point functions (section
\ref{sc:n-point}) and determinants (section \ref{sc:determinants}) is given,
listing parameters, loss of precision and comments.
% #] Introduction:
% #[ Brief description of the scalar loop routines:
\section{Brief description of the scalar loop routines}
\label{ap:FFdescription}
This section will give an overview of the structure of the scalar loop
routines which implement the algorithms of \cite{vOV90}. The purpose
of this is to provide a map for the adventurous person who wants to understand
what is going on. Some details of the algorithms chosen are also given.
\subsection{Overview}
The language chosen is Fortran, mainly because so much of the
calculations are done with complex variables. There are currently about
26000 lines of code. Some of it is repetitious, as many routines exist
in a real and complex version which hardly differ. Global names
(subprograms, common blocks) almost all start with the letters
\Code{FF}, for FormFactor (the only exceptions are the functions
\Code{dfflo1}, \Code{zfflo1}, \Code{zfflog} and \Code{zxfflg}). For this
reason I refer to the set as the FF package. The third letter of the
name often indicates whether a routine is complex (\Code{z} or \Code{c})
or real. The real four-point function is thus calculated with the
routine \Code{ffxd0}, the complex dilogarithm in \Code{ffzli2}. All
common blocks are included via a single include file, which also defines
some constants such as one and $\pi$ in the precision currently used. I
have tried hard to make switching between \Code{real} and \Code{double
precision} as easy as possible.
The packages roughly consists of six kind of routines:
\begin{itemize}
\item The high-level and user-callable routines, such as \Code{ffxd0}.
\item Dotproduct calculation routines, such as \Code{ffdot4}.
\item The determinant routines, such as \Code{ffdl4p}; the number indicates
the size of the determinant and the letter the kind.
\item Routines to get combinations of dilogarithms, for instance
\Code{ffcxr}; the names roughly follow the names given in \cite{vOV90}.
\item Low level routines: the logarithms, dilogarithms, $\eta$ functions.
\item Support routines: initialisation, the error and warning system, taylor
series boundaries and consistency checking.
\end{itemize}
The high-level routines first compute missing arguments such as the
differences of the input parameters. Next the parameters are permuted
to a position in which the evaluation is possible. All dotproducts are
calculated and from these the necessary determinants are determined. In
the case of the four-point function we now perform the projective
transformation and compute all transformed dotproducts and differences.
The determinants and dotproducts allow us to find the combinations of
roots needed, which are passed on to the routines which evaluate the
combinations of dilogarithms.
The most difficult part is to anticipate the cancellations among the
dilogarithms without actually calculating them. This is usually done by
comparing the arguments mapped to the unit circle $c_i'$, with a safety
margin. Unfortunately the choices made are not always the best,
especially on the higher levels (complete $C_0$'s or $S_i$'s). This is
the reason the user can influence the possibilities considered with the
flags \Code{l4also} and \Code{ldc3c4}, which switch on or off the 16
dilogarithm algorithm and the expanded difference between two
three-point functions.
The dilogarithms are evaluated in \Code{ffxli2} and \Code{ffzli2}.
These expect their arguments to lie in the region $|z| < 1, \Re(z) <1/2$
already, more general functions (used for testing) are \Code{ffzxdl} and
\Code{ffzzdl}. The algorithm used is the expansion in $\log(1-z)$
described in \cite{tHV79}. As the precision of the computer is unknown
in advance fancy Chebychev polynomials and the like are not used.
The values of the logarithms and dilogarithms are placed in a big array
which is only summed at the last moment. This is done to prevent false
alarms of the warning system. {\em Every single addition} in the whole
program of which one cannot prove that both operands have the same sign
is checked for numerical problems with a line like
\begin{verbatim}
sum = x + y + z
xmax = max(abs(x),abs(y))
if ( abs(sum) .lt. xloss*xmax ) call ffwarn(n,ier,sum,xmax)
\end{verbatim}
with \Code{xloss} set to 1/8 by \Code{ffini}. A theoretically better
way would be to compare the result to the partial sums. We are however
only interested in the order of magnitude of the cancellation, and for
that this method suffices.
The only other place where one can lose significant precision is in
taking the logarithm of a number close to 1. All calls to the logarithm
are checked by a wrapper routine for this case. A routine
\Code{dfflo1/zfflo1} is provided to evaluate $\log(1-x)$.
Finally a word on the determinant routines. They use in general a very
simplistic algorithm to find the linearly independent combination of
vectors which gives the most accurate answer: try until it works. All
sets are tried in order until the sum in no smaller than \Code{xloss}
times the largest term. In the larger determinants this set is
remembered and tried first the next time the routine is called.
\subsection{Timings}
In table \ref{tab:timings} we give the timings of the scalar n-pint
functions on different machines. The numbers given can only be an
indication as the path taken varies wildly with the complexity of the
problem. A numerical unstable set of parameters might mean much more
time spent in the determinant routines and a bit less in the
dilogarithms for instance. The flag \Code{ltest} was turned off for
these tests.
\begin{table}[htbp]
\begin{center}
\begin{tabular}{|l|rrrr|}
\hline
machine & $B_0$ & $C_0$ & $D_0$ & $E_0$ \\
\hline
NP1 & 0.2 \ms & 4.5 \ms & 13 \ms & 65 \ms \\
Sun4 & 0.9 \ms & 8.1 \ms & 20 \ms & 90 \ms \\
Apollo 10020 & 0.08 \ms & 1.5 \ms & 4.9 \ms & 24 \ms \\
Atari ST & 40 \ms & 400 \ms & 900 \ms & 5800 \ms \\
\hline
\end{tabular}
\end{center}
\caption{Timings of the scalar n-point functions.}
\label{tab:timings}
\end{table}
For a $D_0$, approximately 10\% of the time is spent in the
dilogarithms, 50\% in the determinants and the rest in the sorting out
and summing.
\subsection{Tests}
The $B_0$ has been tested against FormF over all parameter space, the
$C_0$ for some 100 physical configurations and the $D_0$ for about 30.
The $E_0$ is as yet untested (except for internal consistency). The only
differences were in very low t-channel configurations and I have reason
to distrust FormF. The limit is not approached smoothly, and very
extreme kinematical configurations such as those occurring in the ZEUS
luminosity monitor \cite{vdH90} often give a \Code{DMPX}. FF approaches
the theoretically correct limit smoothly.
\section{Installation}
\label{sc:installation}
In this section the installation of the FF routines on a computer is
discussed. We will first discuss the problems which may be caused by
the Fortran used. Next the use of data files is discussed.
The routines have been written in standard (ANSI) Fortran 77, with a few
extensions, which most compilers allow. The package compiles without
changes on the Gould/Encore (fort), Apollo/SR10 (ftn), Meiko (mf77) and
VAX (fortran/g\_float). Changes are necessary for the Apollo/SR9 (ftn),
Sun (f77), CDC (ftn5), Atari ST (Absoft) and possibly other compilers.
The extensions used are:
\begin{itemize}
\item the use of tabs.
\item the use of lower case letters.
\item the use of \Code{implicit none}.
\item the use of the \Code{include} directive to include the file
'ff.h', which contains parameters and common blocks used throughout
the package.
\item the use of \Code{DOUBLE COMPLEX} data type. In principle FF can
also run in single precision, but the loss of 3--5 digits can often
not be avoided in the evaluation of an n-point function. This may
leave too little information.
\end{itemize}
All these extensions can easily be removed with a good editor. The
following commands will convert the source to ANSI Fortran. (The syntax
is that of the editor \textsc{STedi}).
\begin{verbatim}
mark
/include 'ff.h'/
deleteline
read ff.h
/implicit none/=/implicit logical (a-z)/
/DBLE(/=/REAL(/
/DIMAG/=/AIMAG/
/DCMPLX/=/CMPLX/
/DOUBLE COMPLEX/=/COMPLEX/
end
# convert to uppercase
ctrl-u
# expand the tabs
te
\end{verbatim}
Note that all names that have to be converted when switching from single
to double precision are in capitals. It is possible to run the package
in double precision real and single precision complex (the error
reporting system might underestimate the accuracy in this case). To
convert to single precision real (for instance on a CDC) use
\begin{verbatim}
/DOUBLE PRECISION/=/REAL/
\end{verbatim}
It may be necessary to convert to systems with other names for the
double precision complex data types and functions (e.g.~IBM). The
double complex functions to be transformed are \Code{zfflo1},
\Code{zfflog} and \Code{zxfflg}. They are now declared as \Code{DOUBLE
COMPLEX function(args)}, change this to \Code{COMPLEX
function*16(args)}.
Generic names for the intrinsic functions \Code{sqrt}, \Code{log}, and
\Code{log10} are used everywhere, so these need not be changed.
Note that all subroutines have names starting with \Code{ff}, the
functions have the \Code{ff} in the middle of the name. It is hoped
that this naming convention will minimise conflicts with user-defined
names. The author is aware of the possible conflict with the
Cern-library package `ffread', but could not think up another key.
The FF package uses three data files: \Code{fferr.dat},
\Code{ffwarn.dat} and \Code{ffperm5.dat}. The mechanism for locating
these is very simple: in the subroutine which reads these files
(\Code{ffopen} and \Code{ffwarn} in the file \Code{ffini}) the variable
\Code{fullname} is defined. You will have to fill in here a directory
(readable by everyone using the routines) that contains the
datafiles\footnote{for VAX/VMS one has to add the non-standard
\Code{READONLY} to the open statement}.
\section{Initialization}
\label{sc:initialization}
When using the FF routines a few initialisations have to be performed in
the program that calls these routines.
The common blocks used are all listed in the file `ff.h'. If your
system does not automatically save common blocks (like Absoft Fortran)
it is easiest to include this file in the main program.
Furthermore, before any of the subroutines are called, a call must be
made to \Code{ffini} to initialise some arrays of Taylor series
coefficients. This routine also tries to establish the machine
precision and range, causing two underflows. If this is a problem
(e.g.~with Gould dbx), edit this routine to a hardwired range. Finally
it sets up reasonable defaults for the tracing flags (these are listed
in \ref{sec:debugging}). This call is made automatically if one uses
the \Code{npoin} entry point.
A call to \Code{ffexi} will check the integrity of these arrays and
give a summary of the errors and warnings encountered.
Finally, on systems on which error trapping is possible it may be
advantageous to use a call
\begin{verbatim}
call qsetrec(ffrcvr)
\end{verbatim}
This forwards any floating point errors to the error reporting system.
The routine qsetrec is available in the CERN library.
\section{The error reporting system}
\subsection{Overview}
One of the goals of this package was to give {\em reliable} answers.
For this purpose a rather elaborate error reporting system has been
built in. First, there are a few flags which govern the level of
internal checking. Secondly, a count of the number of digits lost in
numerical cancellations above some acceptable number (this number is
defined for each function in section \ref{sc:n-point}) is default
returned with any result. This count is quite conservative. {\em Do
not forget the few digits normal everyday loss} on top of the reported
losses, however: the `acceptable' loss. Finally, a message can be given
to the user where the error or warning occurred. For this to be useful,
the user has to update some variables.
\subsection{Using the system}
\subsubsection{Errors}
A distinction is made between errors and warnings. An error is an
internal inconsistency or a floating point error (if trapped). If an
error occurs a message is printed on standard output like this (the
output is truncated to fit on the page)
\begin{verbatim}
id nr 41/ 7, event nr 16
error nr 32: nffeta: error: eta is not defined for real ...
\end{verbatim}
The first part of the id must be defined by the user. It is given by
the variable \Code{id} in the common block \Code{/ffflags/}. I tend to
use '41' for the first four-point function, '42' for the second one,
etc:
\begin{verbatim}
id = 41
call ffxd0(cd0,xpi1,ier)
id = 42
call ffxd0(cd0,xpi2,ier)
\end{verbatim}
The second part (\Code{idsub}) is maintained internally to pinpoint the
error. The event number is assumed to be \Code{nevent} in the same
common block. It too has to be incremented by the user. The error
number is used internally to fetch the message text from the file
\Code{fferr.dat}, which also includes the name of the routine in which
the error occurred. If an error has occurred the variable \Code{ier} is
incremented by 100.
A call to \Code{fferr} with the error number 999 causes a list of all
errors so far to be printed out and this list to be cleared. This is
used by \Code{ffexit}.
\subsubsection{Warnings}
A warning is a loss of precision because of numerical cancellations.
Only losses greater than a certain default value are noticed. This is
controlled by the variable \Code{xloss} in the common block
\Code{/ffprec/}, which is set to 1/8 by \Code{ffini}. A power of 2 is
highly recommended. If a loss of precision greater than this tolerable,
everyday loss occurs the subroutine \Code{ffwarn} is called. The
default action is to only increment the variable \Code{ier} by the
number of digits lost over the standard tolerated loss of \Code{xloss}.
Nothing is printed, but all calls occurring with the same value of the
event counter \Code{nevent} are remembered. This queue is printed when
\Code{ffwarn} is called with error number 998.
The reason for this is simply that I do not like hundreds of meaningless
warnings to clutter the important ones in a big Monte Carlo. I
therefore include a line like
\begin{verbatim}
if ( ier .gt. 10 ) call ffwarn(998,ier,x0,x0)
\end{verbatim}
at the end of the calculation of one event, causing the system to report only
those errors which led to a fatal loss of precision. The warning messages
produced are similar to an error message:
\begin{verbatim}
id nr 41/ 4, event nr 2265
warning nr 138: ffdl3p: warning: cancellations in \delta_{...
(lost 1 digits)
\end{verbatim}
The number of digits lost gives the number of digits which have become
unreliable in the answer due to this step {\em over the normal loss of
\Code{xloss}}.
Another special error number is 999: this causes a list of all warnings
which have occurred up to that point to be printed out plus the maximum
loss suffered at that point. The routine \Code{ffexi} uses this.
There is one warning message which does not increase \Code{ier}: the
remark that there are cancellations among the input parameters. This is
the responsibility of the user. Most routines have an alternative entry
point with the differences of the parameters required as input.
The user can edit the routines \Code{ffwarn} and \Code{fferr} (in the
file \Code{ffini}) to customize the error and warning reporting.
\subsection{Debugging possibilities}
\label{sec:debugging}
There are a few flags to control the package in great detail. These are
contained in the common block \Code{/ffflags/}. The first one, \Code{lwrite},
if on, gives a detailed account of all steps taken to arrive at the answer.
This gives roughly 1000 lines of output for a four-point function. It is
turned off by \Code{ffini}. The second one, \Code{ltest}, turns on a lot of
internal consistency checking. If something is found wrong a message like
\begin{verbatim}
ffdot4: error: dotproducts with p(10) wrong: -1795. ... -9.5E-12
\end{verbatim}
is given. The last number gives the deviation from the expected result, in
this case a relative precision of $10^{-15}$ was found instead of the expected
$10^{-16}$. The \Code{ier} counter is {\em not} changed, as these are usually
rounding off errors. Please report any serious errors. This flag is
turned on by \Code{ffini}, turn it off manually once you are convinced that
your corner of parameter space does not present any problems.
The next two flags, \Code{l4also} and \Code{ldc3c4}, control the
checking of some extra algorithms. This takes time and may even lead to
worse results in some rare cases. If you are pressed for speed, try
running with these flags off and only switch them on when you get the
warning message ``\Code{Cancellations in final adding up}''. If you get
mysterious warnings with the flags on, try turning them off.
Another flag for internal use, \Code{lmem} controls a rudimentary memory
mechanism which is mainly used when trying different permutations of the
parameters of the three- and four-point functions. Its use is taken care of
by the system.
Next there is the possibility to save the array of dotproducts used by the
three and four-point function. These arrays are used by the tensor integrals.
Finally there is the possibility to to turn off all warning reporting by
setting \Code{lwarn} to \Code{.FALSE.}. Do not do this until you are completely
satisfied that there are no problems left! It
will also invalidate the value of \Code{ier}, so you will have no warning
whatsoever if something goes horribly wrong.
It may be advantageous to change the flags to parameters and recompile for
extra speed and smaller size. Approximately half the code of the package is
for debugging purposes.
\subsection{Summary}
The following sequence has been found to be very convenient.
\begin{enumerate}
\item Make sure that the system can find \Code{fferr.dat} and \Code{ffwarn.dat}
and that the routine \Code{ffini} is called.
\item Do a pilot run with \Code{ltest} on to check for internal problems within
the FF routines. One can also look for the best permutation of the input
parameters at this stage. Please report anything irregular.
\item Run a full Monte Carlo with \Code{ltest} off, but \Code{lwarn} still
on to check for numerical problems.
\item Only if there are {\em no} numerical problems left, you can turn off
\Code{lwarn} to gain the last percents in speed.
\end{enumerate}
% #] the error reporting system:
% #[ the scalar n-point functions:
% #[ intro:
\section{Scalar n-point functions}
\label{sc:n-point}
In general there are two routines for almost every task: one for the case that
all parameters are real and one to use if one or more are complex. Infra-red
divergent diagrams are calculated with a user-defined cutoff on the divergent
logarithms. Planned extensions are
\begin{itemize}
\item the derivative of B0,
\item fast special cases,
\item six-point functions.
\end{itemize}
Please note that there is also an entry-point \Code{npoin} which returns the
scalar integrals plus the supported tensor integrals in a form compatible with
FormF\null. The number of digits lost cannot be included this way, however.
It is provided on request to allow old code which used FormF to run without a
CDC.
% #] intro:
% #[ 1point:
\subsection{One-point function}
The one-point function $\Code{ca0} = A_0(m^2) = \frac{1}{i\pi^2}\int d^n
Q/(Q^2-m^2)$ is calculated with the subroutines
\begin{verbatim}
subroutine ffca0(ca0,d0,xmm,cm,ier)
integer ier
DOUBLE COMPLEX ca0,cm
DOUBLE PRECISION d0,xmm
subroutine ffxa0(ca0,d0,xmm,xm,ier)
integer ier
DOUBLE COMPLEX ca0
DOUBLE PRECISION d0,xmm,xm
\end{verbatim}
with $\Code{d0} = \Delta = -2/\epsilon - \gamma + \log(4\pi) $ the
infinity from the renormalisation scheme and the mass $\Code{xmm} = \mu$
arbitrary. The final result should not depend on it. $\Code{xm} = m^2$
is the internal mass {\em squared}. This is of course a trivial function.
% #] 1point:
% #[ 2point:
\subsection{Two-point function}
\subsubsection{Calling sequence}
The two-point function $\Code{cb0} = B_0(m_a^2,m_b^2,k^2)$ is calculated
in the subroutines
\begin{verbatim}
subroutine ffcb0(cb0,d0,xmu,ck,cma,cmb,ier)
integer ier
DOUBLE COMPLEX cb0,ck,cma,cmb
DOUBLE PRECISION xmu,d0
subroutine ffxb0(cb0,d0,xmu,xk,xma,xmb,ier)
integer ier
DOUBLE COMPLEX cb0
DOUBLE PRECISION d0,xmu,xk,xma,xmb
\end{verbatim}
with \Code{d0} and \Code{xmm} as in the one-point function. $\Code{xk} =
k^2$ in Bj{\o}rken and Drell metric {\small $(+---)$} and $\Code{xma,b} =
m_{a,b}^2$ are the internal masses {\em squared}.
\subsubsection{Comments}
The maximum loss of precision without warning in the scalar two-point function
is $(\Code{xloss})^3$ in the basic calculation plus \Code{xloss} when adding
the renormalisation terms. Numerical instabilities only occur very close to
threshold ($k^2 \approx (m_a + m_b)^2$). The function can run into underflow
problems if both $|m_a-m_b| \ll m_a$ and $|k^2| \ll m_a^2$. Note that this
function uses Pauli metric {\small $(+++-)$} internally.
% #] 2point:
% #[ 3point:
\subsection{Three-point function}
\subsubsection{Calling sequence}
The three-point function $\Code{cc0} = C_0(m_1^2,m_2^2,m_3^2,p_1^2,
p_2^2,p_3^2)$ is calculated in the subroutines
\begin{verbatim}
subroutine ffcc0(cc0,cpi,ier)
integer ier
DOUBLE COMPLEX cc0,cpi(6)
subroutine ffxc0(cc0,xpi,ier)
integer ier
DOUBLE COMPLEX cc0
DOUBLE PRECISION xpi(6)
\end{verbatim}
The array \Code{xpi} should contain the internal masses squared in positions
1--3 and the external momenta squared in 4--6. The momentum $\Code{xpi(4)} =
p_1^2$ is the one between $\Code{xpi(1)} = m_1^2$ and $\Code{xpi(2)} =
m_2^2$, and so on cyclically. The routine rotates the diagram to the best
position, so only the swap $m_1^2 \leftrightarrow m_3^2$, $p_1^2
\leftrightarrow p_2^2$ can be used to test the accuracy.
There is an alternative entry point which can be used if there
are significant cancellations among the input parameters.
\begin{verbatim}
subroutine ffxc0a(cc0,xpi,dpipj,ier)
integer ier
DOUBLE COMPLEX cc0
DOUBLE PRECISION xpi(6),dpipj(6,6)
\end{verbatim}
All differences between the input parameters should be given in the array
\Code{dpipj(i,j) = xpi(i) - xpi(j)}.
In the testing stages one can use
\begin{verbatim}
subroutine ffcc0r(cc0,cpi,ier)
integer ier
DOUBLE COMPLEX cc0,cpi(6)
subroutine ffxc0r(cc0,xpi,ier)
integer ier
DOUBLE COMPLEX cc0
DOUBLE PRECISION xpi(6)
\end{verbatim}
It tries 2 different permutations of the input parameters and the two
different signs of the root in the transformation and takes the best one.
This permutation can later be chosen directly in the code.
If the requested three-point function is infra-red divergent (\ie one
internal mass 0 and the other two on-shell) the terms $\log(\lambda^2)$,
with $\lambda$ the regulator mass, are replaced by $\log(\delta)$. In
all other terms the limit $\lambda \to 0$ is taken. The value of the
cutoff parameter $\Code{delta} = \delta$ should be provided via the
common block \Code{/ffcut/}, in which it is the first (and only)
variable. This infra-red option does not yet work in case some of the
masses have a finite imaginary part.
\subsubsection{Comments}
The maximum loss of precision without warning is $(\Code{xloss})^5$.
Numerical instabilities again occur very close to thresholds ($p_i^2 \approx
(m_i + m_{i+1})^2$). There are discrepancies with FormF for t-channel
diagrams in case $t \to 0$, but there are good reasons to distrust FormF
there (the limit is not approached smoothly).
The $Z$ vertex correction to an $ee\gamma$ vertex with one of the electrons
slightly off-shell is stable only for one mirror image.
% #] 3point:
% #[ 4point:
\subsection{Four-point function}
\subsubsection{Calling sequence}
$\Code{cd0} = D_0(m_1^2,m_2^2,m_3^2,m_4^2,
p_1^2,p_2^2,p_3^2,p_4^2,(p_1+p_2)^2,(p_2+p_3)^2)$, the four-point function, is
calculated in the subroutine
\begin{verbatim}
subroutine ffxd0(cd0,xpi,ier)
integer ier
DOUBLE COMPLEX cd0
DOUBLE PRECISION xpi(13)
\end{verbatim}
The array \Code{xpi} should contain the internal masses squared in positions
1--4, the external momenta squared in 5--8 and $s = (p_1+p_2)^2$, $t =
(p_2+p_3)^2$ in 9--10. Positions 11--13 should contain either 0 or
\begin{gather}
\Code{xpi(11) = u = +xpi(5)+xpi(6)+xpi(7)+xpi(8)-xpi(9)-xpi(10)}\nonumber\\
\Code{xpi(12) = v = -xpi(5)+xpi(6)-xpi(7)+xpi(8)+xpi(9)+xpi(10)}\nonumber\\
\Code{xpi(13) = w = +xpi(5)-xpi(6)+xpi(7)-xpi(8)+xpi(9)+xpi(10)}\nonumber
\end{gather}
Unfortunately the complex four-point function does not yet exist in a usable
form.
There are two alternative entry points. The first one can be used if there
are significant cancellations among the input parameters.
\begin{verbatim}
subroutine ffxd0a(cd0,xpi,dpipj,ier)
integer ier
DOUBLE COMPLEX cd0
DOUBLE PRECISION xpi(13),dpipj(10,13)
\end{verbatim}
in which these last elements are required and all differences between the
input parameters are given in \Code{dpipj(i,j) = xpi(i) - xpi(j)}.
The second one can be used in the testing stages.
\begin{verbatim}
subroutine ffxd0r(cd0,xpi,ier)
integer ier
DOUBLE COMPLEX cd0
DOUBLE PRECISION xpi(13)
\end{verbatim}
It tries 6 different permutations of the input parameters and the two
different signs of the root in the transformation and takes the best one.
This permutation can later be chosen directly in the code.
If the requested four-point function is infra-red divergent (i.e.\ one
internal mass 0 and the adjoining lines on-shell) the terms $\log(\lambda^2)$,
with $\lambda$ the regulator mass, are replaced by $\log(\delta)$. In all
other terms the limit $\lambda \to 0$ is taken. The numerical value of
$\Code{delta} = \delta$ should be placed in a common block \Code{/ffcut/}.
{\em Due to problems in the transformation at this moment at most one
propagator can have zero mass}.
\subsubsection{Comments}
The maximum loss of precision without warning is $(\Code{xloss})^7$.
There may be problems with diagrams with masses and/or momenta squared
exactly zero. If you get a division by zero or the like try with a
small non-zero mass.
The following diagrams are known not give an accurate answer:
\begin{enumerate}
\item Again, any configuration with an external momentum very close to
threshold.
\item $\gamma\gamma \to \gamma\gamma$ for $s \ll m^2$
\end{enumerate}
% #] 4point:
% #[ 5point:
\subsection{Five-point function}
\subsubsection{Calling sequence}
The five-point function $\Code{ce0} = E_0(m_i^2,p_i^2,(p_i+p_{i+1})^2,i=1,
5)$ and the five four-point functions which one obtains by removing one
internal leg are calculated in the subroutine
\begin{verbatim}
subroutine ffxe0(ce0,cd0i,xpi,ier)
integer ier
DOUBLE COMPLEX ce0,cd0i(5)
DOUBLE PRECISION xpi(20)
\end{verbatim}
The array \Code{xpi} should contain the internal masses squared in positions
1--5, the external momenta squared in 6--10 and the sum of two adjacent
external momenta squared in 11--15 (the analogons of $s$ and $t$ in the
four-point function). Positions 16--20 should contain either 0 or
$(p_i+p_{i+2})^2$ (the analogon of $u$).
There are two alternative entry points. The first one can be used if there
are significant cancellations among the input parameters.
\begin{verbatim}
subroutine ffxe0a(ce0,cd0i,xpi,dpipj,ier)
integer ier
DOUBLE COMPLEX ce0,cd0i(5)
DOUBLE PRECISION xpi(20),dpipj(15,20)
\end{verbatim}
in which these last elements are required and all differences between the
input parameters are given in \Code{dpipj(i,j) = xpi(i) - xpi(j)}.
The second one can be used in the testing stages.
\begin{verbatim}
subroutine ffxe0r(ce0,cd0i,xpi,ier)
integer ier
DOUBLE COMPLEX ce0,cd0i(5)
DOUBLE PRECISION xpi(20)
\end{verbatim}
It tries the 12 different permutations of the input parameters and the two
different signs of the root in the transformation and takes the best one.
This permutation can later be chosen directly in the code.
\subsubsection{Comments}
The five-point function has not yet been adequately tested.
The maximum loss of precision without warning is $(\Code{xloss})^7$.
There may be problems with diagrams with masses and/or momenta squared
exactly zero. If you get a division by zero or the like try with a
small non-zero mass.
% #] 5point:
% #] the scalar n-point functions:
% #[ the tensor integrals:
\section{Tensor integrals}
At this moment only the vector two, three and four-point functions are
available, of which the two-point functions is very badly implemented. These
tensor integrals are scheme-independent, the higher order functions differ
between the Passarino-Veltman scheme \cite{PaV79} and the
kinematical determinant scheme described in \cite{vOV90}.
\subsection{Vector integrals}
\subsubsection{Two-point function}
The vector two-point function $B_1 p^\mu = \int d^n
Q^\mu/(Q^2-m_1^2)((Q+p)^2-m_2^2)$ is calculated in
\begin{verbatim}
subroutine ffxb1(cb1,cb0,ca0i,xp,xm1,xm2,ier)
integer ier
DOUBLE PRECISION xp,xm1,xm2
COMPLEX cb1,cb0,ca0i(2)
\end{verbatim}
The input parameters are $\Code{cb0} = B_0$ the scalar two-point function,
$\Code{ca0i(i)} = A_0(m_i^2)$ the scalar one-point functions and the rest
as in \Code{ffxb0}. {\em This function must/will be improved}.
\subsubsection{Three-point function}
The subroutine for the evaluation of the vector three-point function $C_{11}
p_1^\mu + C_{12} p_2^\mu = \int d^n Q^\mu / (Q^2-m_1^2) ((Q+p_1)^2-m_2^2)
((Q+p_1+p_2)^2-m_3^2)$ is
\begin{verbatim}
subroutine ffxc1(cc1i,cc0,cb0i,xpi,piDpj,del2,ier)
integer ier
DOUBLE PRECISION xpi(6),piDpj(6,6),del2
COMPLEX cc1i(2),cc0,cb0i(3)
\end{verbatim}
The required input parameters are $\Code{cc0} = C_0$ the scalar
three-point function, $\Code{cb0i(i)}$ the two-point functions with
$m_i^2$ {\em missing}: $\Code{cb0i(1)} = B_0(p_2^2,m_2^2,m_3^2)$.
Further \Code{xpi} are the masses as in \Code{ffxc0} and \Code{piDpj},
\Code{del2} the dotproducts and kinematical determinant as saved by
\Code{ffxc0} when \Code{ldot} is \Code{.TRUE.}
\subsubsection{Four-point function}
The calling sequence for the vector four-point function \Code{cd1i} which
returns $D_{11}$, $D_{12}$, $D_{13}$, the coefficients of $p_1^\mu$, $p_2^\mu$
and $p_3^\mu$ is
\begin{verbatim}
subroutine ffxd1(cd1i,cd0,cc0i,xpi,piDpj,del3,del2i,ier)
integer ier
DOUBLE PRECISION xpi(13),piDpj(10,10),del3,del2i(4)
COMPLEX cd1i(3),cd0,cc0i(4)
\end{verbatim}
The input parameters are as follows. $\Code{cd0} = D_0$ is the scalar
four-point function, $\Code{cc0i(i)} = C_0(\mbox{without }m_i)$ the scalar
three-point functions, \Code{xpi} the masses as in \Code{ffxd0} and \Code{piDpj},
\Code{del3} and \Code{del2i} the dotproducts and kinematical determinant as
saved by \Code{ffxd0} and \Code{ffxc0} when \Code{ldot} is \Code{.TRUE.}
% #] the tensor integrals:
% #[ determinants:
\section{Determinants}
\label{sc:determinants}
A knowledge of a few of the determinant routines may be useful to the user as
well. On the one hand they can be used in other parts of the calculation,
e.g.\ in the reduction to scalar integrals, but they also are the place where
the numerical instabilities have been concentrated. It is often useful or
even necessary to import the required determinants directly from the
kinematics section. We therefore list all the routines calculating
determinants of external vectors and some containing internal vectors.
\subsection{$2\times2$ determinants}
To calculate the $2\times2$ determinant $\Code{del2} =
\delta^{p_{i_1}p_{i_2}}_{p_{i_1}p_{i_2}}$, $p_3 = -(p_1+p_2)$, given the
dotproducts use
\begin{verbatim}
subroutine ffcel2(del2,piDpj,ns,i1,i2,i3,lerr,ier)
integer ns,i1,i2,i3,lerr,ier
DOUBLE COMPLEX del2,piDpj(ns,ns)
subroutine ffdel2(del2,piDpj,ns,i1,i2,i3,lerr,ier)
integer ns,i1,i2,i3,lerr,ier
DOUBLE PRECISION del2,piDpj(ns,ns)
\end{verbatim}
In this $\Code{piDpj(i,j)} = p_i \cdot p_j$ is the dotproduct of vectors
$p_i$ and $p_j$, \Code{i1,i2,i3} give the position of the three vectors of
which the determinant has to be calculated in this array. \Code{lerr} should
be 1.
If the dotproducts are not known there is a routine for $\Code{xlambd} =
\lambda(a_1,a_2,a_3)$, which is -2 times the determinant if
$\Code{ai} = p_i^2$.
\begin{verbatim}
subroutine ffclmb(clambd,cc1,cc2,cc3,cc12,cc13,cc23,ier)
integer ier
DOUBLE COMPLEX clambd,cc1,cc2,cc3,cc12,cc13,cc23
subroutine ffxlmb(xlambd,a1,a2,a3,a12,a13,a23,ier)
integer ier
DOUBLE PRECISION xlambd,a1,a2,a3,a12,a13,a23
\end{verbatim}
The \Code{aij = ai - aj} are again differences of the parameters in these
routines.
An arbitrary $2\times2$ determinant $\delta^{p_{i_1} p_{i_2}}_{p_{j_1}
p_{j_2}}$ can be obtained from \Code{ffdl2i}:
\begin{verbatim}
subroutine ffdl2i(dl2i,piDpj,ns,i1,i2,i3,isn,j1,j2,j3,
+ jsn,ier)
integer ns,i1,i2,i3,isn,j1,j2,j3,jsn,ier
DOUBLE PRECISION dl2i,piDpj(ns,ns)
\end{verbatim}
Here the vector $p_{i_3} = \mbox{\small\tt isn}(p_{i_1} + p_{i_2})$ and
analogously for $j$. (Note that the sign is important here).
If there is no connection between the two vectors one should use
\begin{verbatim}
subroutine ffdl2t(dlps,piDpj,i,j,k,l,lk,islk,iss,ns,ier)
integer in,jn,ip1,kn,ln,lkn,islk,iss,ns,ier
DOUBLE PRECISION dlps,piDpj(ns,ns)
\end{verbatim}
to calculate $\delta^{p_i p_j}_{p_k p_l}$ with $p_{lk} = \mbox{\small\tt islk}
( \mbox{\small\tt iss} p_l - pk)$ and no relationship between $p_i$, $p_j$
assumed.
\subsection{$3\times3$ determinants}
To calculate the $3\times3$ determinant $\Code{dl3p} =
\delta^{p_{i_1}p_{i_2}p_{i_3}}_{p_{i_1}p_{i_2}p_{i_3}}$ given the dotproducts
\Code{piDpj}, one can use
\begin{verbatim}
subroutine ffdl3p(dl3p,piDpj,ns,ii,ier)
integer ns,ii(6),ier
DOUBLE PRECISION dl3p,piDpj(ns,ns)
\end{verbatim}
The array \Code{ii(j)} gives the position of the vectors of the determinant has
to be calculated in this array. We assume that $p_{ii(4)} = -p_{ii(1)}
-p_{ii(2)} -p_{ii(3)}$, $p_{ii(5)} = p_{ii(1)} + p_{ii(1)}$ and
$p_{ii(6)} = p_{ii(2)} + p_{ii(3)}$, with all vectors incoming.
The $3\times3$ determinant $\Code{dl3q} = \delta^{s_{i_1} p_{i_2} p_{i_3}
}_{p_{i_1}p_{i_2}p_{i_3}}$, which occurs in expressions for tensor integrals,
is calculated by
\begin{verbatim}
subroutine ffdl3q(dl3q,piDpj,i1,i2,i3,j1,j2,j3,
+ isn1,isn2,isn3,jsn1,jsn2,jsn3,ier)
integer i1,i2,i3,j1,j2,j3,isn1,isn2,isn3,jsn1,jsn2,jsn3,
+ ier
DOUBLE PRECISION dl3q,piDpj(10,10)
\end{verbatim}
Now the only assumptions that are made are that $p_{j_n} = \mbox{\small\tt
jsn}_n (p_{i_n} - \mbox{\small\tt isn}_n p_{i_{n+1}})$ if $\Code{j}_n$ is
unequal to zero. {\em This routine should still be extended}.
\subsection{$4\times4$ determinants}
To calculate the $4\times4$ determinant $\Code{dl4p} =
\delta^{p_{i_1}p_{i_2}p_{i_3}p_{i_4}}_{p_{i_1}p_{i_2}p_{i_3}p_{i_4}}$ given
the dotproducts \Code{piDpj}, one can use
\begin{verbatim}
subroutine ffdl4p(dl4p,piDpj,ns,ii,ier)
integer ns,ii(10),ier
DOUBLE PRECISION dl4p,piDpj(ns,ns)
\end{verbatim}
The array \Code{ii(j)} gives the position of the vectors of the determinant has
to be calculated in this array. We assume that $p_{ii(5)} = -p_{ii(1)}
-p_{ii(2)} -p_{ii(3)} -p_{ii(4)}$, $p_{ii(n+5)} = p_{ii(n)} + p_{ii(n+11)}$,
with all vectors incoming again.
% #] determinants:
\end{appendix}
\begin{flushleft}
\begin{thebibliography}{999}
\itemsep 2pt plus 2pt minus 1pt
\frenchspacing
\bibitem[dACTP98]{dACTP98}
F.~del~Aguila, A.~Culatti, R.~Mu\~noz Tapia, and M.~P\'erez-Victoria,
\textsl{Nucl. Phys.} \textbf{B537} (1999) 561
[hep-ph/9806451].
\bibitem[De93]{De93}
A.~Denner, \textsl{Fortschr. Phys.} \textbf{41} (1993) 307
[arXiv:0709.1075].
\bibitem[HaP98]{HaP98}
T.~Hahn and M.~P\'erez-Victoria,
\textsl{Comput. Phys. Commun.} \textbf{118} (1999) 153
[hep-ph/9807565].
\bibitem[PaV79]{PaV79}
G.~Passarino and M.~Veltman,
\textsl{Nucl. Phys.} \textbf{B160} (1979) 151.
\bibitem[tHV79]{tHV79}
G.~'t~Hooft and M.~Veltman,
\textsl{Nucl. Phys.} \textbf{B153} (1979) 365.
\bibitem[vdH90]{vdH90}
M.~van~der~Horst, Ph.D.\ thesis, Universiteit van Amsterdam, 1990.
\bibitem[vOV90]{vOV90}
G.J.~van Oldenborgh, J.A.M.~Vermaseren,
\textsl{Z. Phys.} \textbf{C46} (1990) 425.
\bibitem[KLN]{KLN}
T.~Kinoshita, \textsl{J. Math. Phys.} \textbf{3} (1962) 650, \\
T.D.~Lee, M.~Nauenberg, \textsl{Phys. Rev.} \textbf{133} (1964) 1549, \\
N.~Nakanishi, \textsl{Progr. Theor. Phys.} \textbf{19} (1958) 159.
\end{thebibliography}
\end{flushleft}
\printindex
\end{document}
|