File: eos_bifluid.h

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (1946 lines) | stat: -rw-r--r-- 73,821 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
/*
 *  Definition of Lorene classes Eos_bifluid
 *				 Eos_bf_poly
 *                               Eos_bf_tabul
 */

/*
 *   Copyright (c) 2001-2002 Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __EOS_BIFLUID_H_ 
#define __EOS_BIFLUID_H_ 

/*
 * $Id: eos_bifluid.h,v 1.22 2015/06/26 14:10:08 j_novak Exp $
 * $Log: eos_bifluid.h,v $
 * Revision 1.22  2015/06/26 14:10:08  j_novak
 * Modified comments.
 *
 * Revision 1.21  2015/06/11 13:50:18  j_novak
 * Minor corrections
 *
 * Revision 1.20  2015/06/10 14:39:17  a_sourie
 * New class Eos_bf_tabul for tabulated 2-fluid EoSs and associated functions for the computation of rotating stars with such EoSs.
 *
 * Revision 1.19  2014/10/13 08:52:33  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.18  2014/04/25 10:43:50  j_novak
 * The member 'name' is of type string now. Correction of a few const-related issues.
 *
 * Revision 1.17  2004/09/01 09:49:46  r_prix
 * adapted to change in read_variable() for strings
 *
 * Revision 1.16  2004/03/22 13:12:41  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.15  2004/01/30 13:21:29  r_prix
 * add documentation about 'special' 2-fluid typeos=5: == type0 + slow-rot style inversion
 *
 * Revision 1.14  2003/12/17 23:12:30  r_prix
 * replaced use of C++ <string> by standard ANSI char* to be backwards compatible
 * with broken compilers like MIPSpro Compiler 7.2 on SGI Origin200. ;-)
 *
 * Revision 1.13  2003/12/05 15:08:38  r_prix
 * - use read_variable() to read eos_bifluid from file
 * - changed 'contructor from file' to take filename as an argument instead of ifstream
 * - changed 'name' member of Eos_bifluid to C++-type string (for convenience&safety)
 *
 * Revision 1.12  2003/12/04 14:13:32  r_prix
 * added method get_typeos {return typeos}; and fixed some comments.
 *
 * Revision 1.11  2003/11/18 18:25:15  r_prix
 * moved particle-masses m_1, m_2 of the two fluids into class eos_bifluid (from eos_bf_poly)
 *
 * Revision 1.10  2002/10/16 14:36:29  j_novak
 * Reorganization of #include instructions of standard C++, in order to
 * use experimental version 3 of gcc.
 *
 * Revision 1.9  2002/09/13 09:17:31  j_novak
 * Modif. commentaires
 *
 * Revision 1.8  2002/06/17 14:05:16  j_novak
 * friend functions are now also declared outside the class definition
 *
 * Revision 1.7  2002/06/03 13:23:16  j_novak
 * The case when the mapping is not adapted is now treated
 *
 * Revision 1.6  2002/05/31 16:13:36  j_novak
 * better inversion for eos_bifluid
 *
 * Revision 1.5  2002/05/02 15:16:22  j_novak
 * Added functions for more general bi-fluid EOS
 *
 * Revision 1.4  2002/01/16 15:03:27  j_novak
 * *** empty log message ***
 *
 * Revision 1.3  2002/01/11 14:09:34  j_novak
 * Added newtonian version for 2-fluid stars
 *
 * Revision 1.2  2001/11/29 15:05:26  j_novak
 * The entrainment term in 2-fluid eos is modified
 *
 * Revision 1.1.1.1  2001/11/20 15:19:27  e_gourgoulhon
 * LORENE
 *
 * Revision 1.6  2001/08/31  15:47:35  novak
 * The flag tronc has been added to nbar_ent.. functions
 *
 * Revision 1.5  2001/08/27 12:21:11  novak
 * The delta2 Cmp argument put to const
 *
 * Revision 1.4  2001/08/27 09:50:15  novak
 * New formula for "polytrope"
 *
 * Revision 1.3  2001/06/22 15:36:11  novak
 * Modification de Eos_bifluid::trans2Eos
 *
 * Revision 1.2  2001/06/22 11:52:44  novak
 * *** empty log message ***
 *
 * Revision 1.1  2001/06/21 15:21:22  novak
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/eos_bifluid.h,v 1.22 2015/06/26 14:10:08 j_novak Exp $
 *
 */

// Standard C++
#include "headcpp.h"
#include <string>

// Headers C
#include <cstdio>

// Lorene classes
#include "param.h"
namespace Lorene {
class Tbl ;
class Param ;
class Cmp ;
class Eos ;
class Eos_poly ;

		    //------------------------------------//
		    //   base class Eos for two fluids	  //
		    //------------------------------------//
#define MAX_EOSNAME 100

/**
 * 2-fluids equation of state base class. 
 *
 * Fluid 1 is supposed to correspond to neutrons, whereas fluid 2
 * corresponds to e.g. protons. Neutron 4-velocity is \f$u^\alpha_{\rm n}\f$
 * and proton one is \f$u^\alpha_{\rm p}\f$
 *
 * Therefore, the EOS is defined by giving two log-enthalpies AND a 
 * relative velocity as inputs. The output are then: two baryonic
 * densities, the total energy density and pressure
 * The enthalpies \f$f_1\f$ and \f$f_2\f$ are obtained through the formula
 * \f[
 * {\rm d}{\cal E}=f^1{\rm d}n_1+f^2{\rm d}n_2+\alpha{\rm d}\Delta^2
 * \label{eeosbfdefent}
 * \f]
 * see Comer, Novak \& Prix. Log-enthalpies are then defined as
 * \f$H_1 = \ln\left( \frac{f^1}{m_1c^2} \right)\f$, where \f$m_1\f$ is the
 * mass of a particle of the first fluid. (same for \f$H_2\f$)
 * The relative velocity \f$\Delta^2\f$
 * is defined as in Comer, Novak \& Prix. It can be seen as
 * the neutron velocity seen in the frame of protons (or vice-versa): 
 * \f$\Gamma_\Delta = -g_{\alpha\beta} u^\alpha_{\rm n} u^\beta_{\rm p}\f$
 * \ingroup (eos)
 */
class Eos_bifluid {

    // Data :
    // -----

    protected: 
	string name;	    ///< EOS name

	/** Individual particle mass \f$m_1\f$  
	 *  [unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$]. 
	 */
	double m_1 ; 

	/** Individual particle mass \f$m_2\f$  
	 *  [unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$]. 
	 */
	double m_2 ; 


    // Constructors - Destructor
    // -------------------------
    protected:
	Eos_bifluid() ;			///< Standard constructor

	/// Standard constructor with name and the two masses per particle
	explicit Eos_bifluid(const char* name_i, double mass1, double mass2) ; 

	Eos_bifluid(const Eos_bifluid& ) ;	///< Copy constructor	

    protected:
	/** Constructor from a binary file (created by the function 
	 *  \c sauve(FILE*) ). 
	 *  This constructor is protected because any EOS construction
	 *  from a binary file must be done via the function 
	 * \c Eos_bifluid::eos_from_file(FILE*) . 
	 */
	Eos_bifluid(FILE* ) ; 
	
	/** Constructor from a formatted file.
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function 
	 *  \c Eos_bifluid::eos_from_file(const char*). 
	 *
	 *  The following fields have to be present in the config-file:\\
	 *  name: [string] name of the EOS
	 *  m_1, m_2: [double] baryon masses of the 2-fluids
	 *
	 */
	Eos_bifluid (const char *fname ) ; 
	
        /** Construction of an EOS from a formatted file.
	 *
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function 
	 *  \c Eos_bifluid::eos_from_file(ifstream& ). 
	 *
	 */
	Eos_bifluid (ifstream& fich) ; 


    public:
	virtual ~Eos_bifluid() ;			///< Destructor

    // Assignment
    // ----------
	/// Assignment to another \c Eos_bifluid 
	void operator=(const Eos_bifluid& ) ;


    // Name manipulation
    // -----------------
    public:
	/// Returns the EOS name
	string get_name() const {return name;} ; 

    // Miscellaneous
    // -------------
    public:

	/** Return the individual particule mass \f$m_1\f$  
	 *  
	 *  [unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$]. 
	 */
	double get_m1() const {return m_1 ;}; 

	/** Return the individual particule mass \f$m_2\f$  
	 *  
	 *  [unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$]. 
	 */
	double get_m2() const {return m_2 ;}; 

	/** Construction of an EOS from a binary file.
	 *  The file must have been created by the function 
	 *  \c sauve(FILE*) .
	 */
	static Eos_bifluid* eos_from_file (FILE* ) ; 
	
	/** Construction of an EOS from a formatted file.
	 * 
	 *  The following field has to be present:\\
	 *  ident: [int] identifying the type of 2-fluid EOS
	 *	1 = relativistic polytropic EOS (class \c Eos_bf_poly ). \\
	 *      2 = Newtonian polytropic EOS (class \c Eos_bf_poly_newt ).
	 */
	static Eos_bifluid* eos_from_file ( const char *fname ) ; 
	
	/** Construction of an EOS from a formatted file.
	 * 
	 *  The fist line of the file must start by the EOS number, according 
	 *  to the following conventions:
	 *  - 1 = 2-fluid relativistic polytropic EOS (class \c Eos_bf_poly ). 
	 *  - 2 = 2-fluid Newtonian polytropic EOS (class \c Eos_bf_poly_newt ). 
	 *  - 3 = 2-fluid tabulated EOS (class \c Eos_bf_tabul). 
	 *  The second line in the file should contain a name given by the user to the EOS.
	 *  The following lines should contain the EOS parameters (one
	 *  parameter per line), in the same order than in the class declaration.
	 */
	static Eos_bifluid* eos_from_file(ifstream& ) ; 


	/// Comparison operator (egality)
	virtual bool operator==(const Eos_bifluid& ) const = 0 ; 

	/// Comparison operator (difference)
	virtual bool operator!=(const Eos_bifluid& ) const = 0 ; 
    
	/** Returns a number to identify the sub-classe of \c Eos_bifluid  
	 *  the object belongs to. 
	 */
	virtual int identify() const = 0 ; 

    // Outputs
    // -------

    public: 
	virtual void sauve(FILE* ) const ;	///< Save in a file

	/// Display
	friend ostream& operator<<(ostream& , const Eos_bifluid& ) ;	

    protected: 
	virtual ostream& operator>>(ostream &) const = 0 ;    ///< Operator >>


    // Computational functions
    // -----------------------
    public:
	/**  General computational method for \c Cmp 's, it computes
	 *   both baryon densities, energy and pressure profiles.
	 * 
	 *  @param ent1 [input] the first log-enthalpy field \f$H_1\f$.  
	 *  @param ent2 [input] the second log-enthalpy field \f$H_2\f$.
	 *  @param delta2 [input] the relative velocity field \f$\Delta^2 \f$
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param ener [output] total energy density \f$\cal E\f$ 
	 *                             of both fluids together
	 *  @param press [output] pressure \e p  of both fluids together
	 *  @param nzet  [input] number of domains where \c resu  is to be
	 *	computed. 
	 *  @param l_min [input] index of the innermost domain is which 
	 *      \c resu  is to be computed [default value: 0]; 
	 *      \c resu  is computed only in domains whose indices are 
	 *      in \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 */
	virtual void calcule_tout(const Cmp& ent1, const Cmp& ent2, const Cmp& delta2,
			  Cmp& nbar1, Cmp& nbar2, Cmp& ener, Cmp& press,
			  int nzet, int l_min = 0) const ; 

 	/** Computes both baryon densities from the log-enthalpies 
	 *  (virtual function implemented in the derived classes). 
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @return true if the 2-fluids model is correct, false otherwise.
	 */
    	virtual bool nbar_ent_p(const double ent1, const double ent2, 
				const double delta2, double& nbar1, 
				double& nbar2) const = 0 ;

	/** Computes baryon density out of the log-enthalpy asuming
	 *  that only fluid 1 is present (virtual function implemented 
	 *  in the derived classes).
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p1(const double ent1) const = 0 ;

	/** Computes baryon density out of the log-enthalpy assuming
	 *  that only fluid 2 is present (virtual function implemented 
	 *  in the derived classes).
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p2(const double ent2) const = 0 ;

	/** Computes both baryon density fields from the log-enthalpy fields
	 *  and the relative velocity.
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 *
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param nzet  number of domains where the baryon density is to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the baryon 
	 *	density is
	 *	to be computed [default value: 0]; the baryon density is 
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 */
    	void nbar_ent(const Cmp& ent1, const Cmp& ent2, const Cmp& delta2, 
		      Cmp& nbar1, Cmp& nbar2, int nzet, int l_min = 0) 
	  const  ; 
    
 	/** Computes the total energy density from the baryonic densities
	 *  and the relative velocity.
	 *  (virtual function implemented in the derived classes). 
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return energy density \f$\cal E\f$ [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double ener_nbar_p(const double nbar1, const double nbar2, 
				   const double delta2) const = 0 ; 
       
	/** Computes the total energy density from the log-enthalpy fields
	 *  and the relative velocity.
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 *  @param nzet  number of domains where the energy density is to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the energy 
	 *	density is
	 *	to be computed [default value: 0]; the energy density is 
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return  energy density field [unit: \f$\rho_{\rm nuc} c^2\f$], 
	 *      where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	Cmp ener_ent(const Cmp& ent1, const Cmp& ent2, const Cmp& delta2, 
		      int nzet, int l_min = 0) const ; 
    
 	/** Computes the pressure from the baryonic densities
	 *  and the relative velocity.
	 *  (virtual function implemented in the derived classes). 
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return pressure \e p  [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double press_nbar_p(const double nbar1, const double nbar2, 
				    const double delta2) const = 0 ; 
       
	/** Computes the pressure from the log-enthalpy fields
	 *  and the relative velocity.
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 *  @param nzet  number of domains where the pressure is to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the pressure
	 *    is to be computed [default value: 0]; the pressure is computed 
	 *      only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return pressure field [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 * 
	 */
    	Cmp press_ent(const Cmp& ent1, const Cmp& ent2, const Cmp& delta2, 
		      int nzet, int l_min = 0) const ; 

	/** Computes the derivative of the energy with respect to
	 * (baryonic density 1)\f$^2\f$.
	 *  (virtual function implemented in the derived classes). 
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{11}=2\frac{\partial{\cal{E}}}{\partial{n_1^2}}\f$ 
	 */
	virtual double get_K11(const double n1, const double n2, const
			       double x)  const = 0 ;

	/** Computes the derivative of the energy with respect to 
	 *  \f$x^2=n_1n_2\Gamma_\Delta\f$.
	 *  (virtual function implemented in the derived classes). 
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{12}=\frac{\partial {\cal E}}{\partial (n_1n_2\Gamma_\Delta)}\f$ 
	 */
	virtual double get_K12(const double n1, const double n2,const
			       double x) const = 0 ;

	/** Computes the derivative of the energy/(baryonic density 2)\f$^2\f$.
	 *  (virtual function implemented in the derived classes). 
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{22} = 2\frac{\partial {\cal E}}{\partial n_2^2}\f$ 
	 */
	virtual double get_K22(const double n1, const double n2, const
			       double x) const = 0 ;

	/** Computes the derivatives of the energy/(baryonic density 1)\f$^2\f$.
	 *
	 *  @param nbar1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 1 at which 
	 *           the derivatives are to be computed
	 *  @param nbar2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  number of domains where the derivatives are to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the
	 *	derivatives are
	 *	to be computed [default value: 0]; the derivatives are
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return derivative \f$K^{11}\f$ field (see \c get_K11 ) 
	 */
    	Cmp get_Knn(const Cmp& nbar1, const Cmp& nbar2, const Cmp& x2,
		    int nzet, int l_min = 0) const  ; 

	/** Computes the derivatives of the energy/(baryonic density 2)\f$^2\f$.
	 *
	 *  @param nbar1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 1 at which 
	 *           the derivatives are to be computed
	 *  @param nbar2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  number of domains where the derivatives are to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the
	 *	derivatives are
	 *	to be computed [default value: 0]; the derivatives are
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return derivative \f$K^{22}\f$ field (see \c get_K12 ) 
	 */
    	Cmp get_Kpp(const Cmp& nbar1, const Cmp& nbar2, const Cmp&
		    x2, int nzet, int l_min = 0) const ; 

	/** Computes the derivatives of the energy with respect to
	 *  \f$x^2=n_1n_2\Gamma_\Delta^2\f$.
	 *
	 *  @param nbar1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 1 at which 
	 *           the derivatives are to be computed
	 *  @param nbar2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  number of domains where the derivatives are to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the
	 *	derivatives are
	 *	to be computed [default value: 0]; the derivatives are
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return derivative \f$K^{12}\f$ field (see \c get_K12 ) 
	 */
     	Cmp get_Knp(const Cmp& nbar1, const Cmp& nbar2, const Cmp& x2,
		    int nzet, int l_min = 0) const ; 


	/**  General computational method for \c Cmp 's (\f$K^{ij}\f$'s).
	 * 
	 *  @param nbar1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 1 at which 
	 *           the derivatives are to be computed.
	 *  @param nbar2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  [input] number of domains where \c resu  is to be
	 *	computed. 
	 *  @param l_min [input] index of the innermost domain is which \c resu 
	 *	is to be computed [default value: 0]; \c resu  is 
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 *  @param fait [input] pointer on the member function of class 
	 *	  \c Eos_bifluid  which performs the pointwise calculation.
	 *  @param resu [output] result of the computation. 
	 */
	void calcule(const Cmp& nbar1, const Cmp& nbar2, const Cmp&
		     x2, int nzet, int l_min, double
		     (Eos_bifluid::*fait)(double, double, double) const, 
		     Cmp& resu)
	  const ; 
 	
	 /** Computes the derivatives of the energy/(baryonic density 1)\f$^2\f$.
	 *
	 *  @param ent1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 1 at which 
	 *           the derivatives are to be computed
	 *  @param ent2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  number of domains where the derivatives are to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the
	 *	derivatives are
	 *	to be computed [default value: 0]; the derivatives are
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return derivative \f$K^{11}\f$ field (see \c get_K11 ) 
	 */
    	Cmp get_Knn_ent(const Cmp& ent1, const Cmp& ent2, const Cmp& x2,
		    int nzet, int l_min = 0) const  ; 

	/** Computes the derivatives of the energy/(baryonic density 2)\f$^2\f$.
	 *
	 *  @param ent1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 1 at which 
	 *           the derivatives are to be computed
	 *  @param ent2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  number of domains where the derivatives are to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the
	 *	derivatives are
	 *	to be computed [default value: 0]; the derivatives are
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return derivative \f$K^{22}\f$ field (see \c get_K12 ) 
	 */
    	Cmp get_Kpp_ent(const Cmp& ent1, const Cmp& ent2, const Cmp&
		    x2, int nzet, int l_min = 0) const ; 

	/** Computes the derivatives of the energy with respect to
	 *  \f$x^2=n_1n_2\Gamma_\Delta^2\f$.
	 *
	 *  @param ent1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 1 at which 
	 *           the derivatives are to be computed
	 *  @param ent2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 2 at which 
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  number of domains where the derivatives are to be
	 *	computed. 
	 *  @param l_min  index of the innermost domain is which the
	 *	derivatives are
	 *	to be computed [default value: 0]; the derivatives are
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 * 
	 *  @return derivative \f$K^{12}\f$ field (see \c get_K12 ) 
	 */
     	Cmp get_Knp_ent(const Cmp& ent1, const Cmp& ent2, const Cmp& x2,
		    int nzet, int l_min = 0) const ; 

	/**  General computational method for \c Cmp 's (\f$K^{ij}\f$'s).
	 * 
	 *  @param ent1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 1 at which 
	 *           the derivatives are to be computed.
	 *  @param ent2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic log enthalpy field of fluid 2 at which  
	 *           the derivatives are to be computed
	 *  @param x2 [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *             relative velocity\f$\times\f$both densities at which 
	 *           the derivative is to be computed	
	 *  @param nzet  [input] number of domains where \c resu  is to be
	 *	computed. 
	 *  @param l_min [input] index of the innermost domain is which \c resu 
	 *	is to be computed [default value: 0]; \c resu  is 
	 *	computed only in domains whose indices are in 
	 *      \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 *  @param fait [input] pointer on the member function of class 
	 *	  \c Eos_bifluid  which performs the pointwise calculation.
	 *  @param resu [output] result of the computation. 
	 */
	void calcule_ent(const Cmp& ent1, const Cmp& ent2, const Cmp&
		     x2, int nzet, int l_min, double
		     (Eos_bifluid::*fait)(double, double, double) const, 
		     Cmp& resu)
	  const ; 

   // Conversion functions
    // ---------------------

	/** Makes a translation from \c Eos_bifluid  to \c Eos . 
	 *  (virtual function implemented in the derived classes). 
	 *
	 *  This is only useful for the construction of a 
	 *  \c Et_rot_bifluid 
	 *  star and ought not to be used in other situations.
	 *  @param relat [input] Relativistic EOS or not. 
	 */
	virtual Eos* trans2Eos() const = 0 ;
    
};
ostream& operator<<(ostream& , const Eos_bifluid& ) ;	


		    //------------------------------------//
		    //	      class Eos_bf_poly		  //
		    //------------------------------------//

/**
 * Analytic equation of state for two fluids (relativistic case).
 * 
 * This equation of state (EOS) corresponds to two types of relativistic
 * particles of rest mass is \f$m_1\f$ and \f$m_2\f$,  whose total energy density 
 * \f$\cal{E}\f$ is related to their numerical densities \f$n_1\f$, \f$n_2\f$ and 
 * relative velocity 
 * \f[
 * \Gamma_\Delta = -g_{\alpha\beta} u^\alpha_{\rm n} u^\beta_{\rm p}
 * \label{e:defgamamdelta}
 * \f]
 * (\f$u^\alpha_{\rm n}\f$ and \f$u^\alpha_{\rm p}\f$ being the 4-velocities of 
 * both fluids), by
 * \f[ \label{eeosbfpolye}
 *   {\cal{E}} = \frac{1}{2}\kappa_1 n_1^{\gamma_1} + m_1 c^2 \, n_1 
 *          \  + \frac{1}{2}\kappa_2 n_2^{\gamma_2} + m_2 c^2 \, n_2 
 *          \  + \kappa_3 n_1^{\gamma_3} n_2^{\gamma_4} 
 *          \  + \Delta^2 \beta n_1^{\gamma_5} n_2^{\gamma_6}\ .  
 * \f]
 * The relativistic (i.e. including rest mass energy) chemical potentials
 * are then
 * \f[ 
 * \mu_1 := {{\rm d}{\cal{E}} \over {\rm d}n_1} = \frac{1}{2}\gamma_1\kappa_1
 *         n_1^{\gamma_1-1} + m_1 c^2 + \gamma_3 \kappa_3 
 *         n_1^{\gamma_3-1} n_2^{\gamma_4} + \Delta^2 \gamma_5 \beta 
 *         n_1^{\gamma_5-1} n_2^{\gamma_6}\ , 
 * \f]
 * \f[
 * \mu_2 := {{\rm d}{\cal{E}} \over {\rm d}n_2} = \frac{1}{2}\gamma_2\kappa_2
 *         n_2^{\gamma_2-1} + m_2 c^2 + \gamma_4 \kappa_3 
 *         n_1^{\gamma_3} n_2^{\gamma_4-1} + \Delta^2 \gamma_6 \beta 
 *         n_1^{\gamma_5} n_2^{\gamma_6-1} \ .
 * \f]
 * The pressure is given by the (zero-temperature) First Law of Thermodynamics:
 * \f$p = \mu_1 n_1 + \mu_2 n_2 - {\cal E}\f$, so that
 * \f[ 
 *   p = \frac{1}{2} (\gamma_1 -1)\kappa_1 n_1^{\gamma_1} +
 *  \frac{1}{2}(\gamma_2-1)\kappa_2 n_2^{\gamma_2} + (\gamma_3 +\gamma_4
 *  -1)\kappa_3 n_1^{\gamma_3}n_2^{\gamma_4} + \Delta^2 \beta \left(
 *  (\gamma_5 + \gamma_6 - 1) n_1^{\gamma_5} n_2^{\gamma_6} \right) \ .  
 * \f]
 * The log-enthalpies are defined as the logarithm of the ratio of the enthalpy
 * per particle (see Eq.~\ref{eeosbfdefent}) by the particle rest mass energy :
 * \f[\label{eeosbfentanal} 
 *   H_i := c^2 \ln \left( \frac{f_i}{m_ic^2} \right)   \ .  
 * \f]
 * From this system, the particle densities are obtained in term of 
 * the log-enthalpies. (The system (\ref{eeosbfentanal}) is a linear one
 * if \f$\gamma_1 = \gamma_2 = 2\f$ and \f$\gamma_3 = \gamma_4 = \gamma_5 =
 * \gamma_6 = 1\f$).
 *
 * The energy density \f$\cal E\f$and pressure \e p  can then be obtained
 * as functions of baryonic densities. \ingroup (eos)
 *
 */
class Eos_bf_poly : public Eos_bifluid {

    // Data :
    // -----

    protected: 
	/// Adiabatic indexes \f$\gamma_1\f$, see Eq.~\ref{eeosbfpolye}
	double gam1 ;

	/// Adiabatic indexes \f$\gamma_2\f$, see  Eq.~\ref{eeosbfpolye}
	double gam2 ;

	/// Adiabatic indexes \f$\gamma_3\f$, see  Eq.~\ref{eeosbfpolye}
	double gam3 ;
	
	/// Adiabatic indexes \f$\gamma_4\f$, see Eq.~\ref{eeosbfpolye}
	double gam4 ;

	/// Adiabatic indexes \f$\gamma_5\f$, see  Eq.~\ref{eeosbfpolye}
	double gam5 ;

	/// Adiabatic indexes \f$\gamma_6\f$, see  Eq.~\ref{eeosbfpolye}
	double gam6 ;
	
	/** Pressure coefficient \f$\kappa_1\f$  , see Eq.~\ref{eeosbfpolye}
	 *  [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
	 *  \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$. 
	 */
	double kap1 ; 

	/** Pressure coefficient \f$\kappa_2\f$  , see Eq.~\ref{eeosbfpolye}
	 *  [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
	 *  \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$. 
	 */
	double kap2 ; 

	/** Pressure coefficient \f$\kappa_3\f$  , see Eq.~\ref{eeosbfpolye}
	 *  [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
	 *  \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$. 
	 */
	double kap3 ; 
	
	/** Coefficient \f$\beta\f$  , see Eq.~\ref{eeosbfpolye}
	 *  [unit: \f$\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma\f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ and
	 *  \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$. 
	 */
	double beta ; 

	double gam1m1 ;	    ///< \f$\gamma_1-1\f$
	double gam2m1 ;	    ///< \f$\gamma_2-1\f$
	double gam34m1 ;    ///< \f$\gamma_3+\gamma_4-1\f$
	double gam56m1 ;    ///< \f$\gamma_5+\gamma_6-1\f$

 protected:
	/** The bi-fluid analytical EOS type:
	 * 
	 *  0 - \f$\gamma_1 = \gamma_2 = 2\f$ and 
	 *  \f$\gamma_3 = \gamma_4 = \gamma_5 = \gamma_6 = 1\f$. In this case, 
	 *  the EOS can be inverted analytically.
	 *
	 *  1 - \f$\gamma_3 = \gamma_4 = \gamma_5 = \gamma_6 = 1\f$, but
	 *  \f$\gamma_1 \not= 2\f$ or \f$\gamma_2 \not= 2\f$. 
	 *
	 *  2 - \f$\gamma_3 = \gamma_5 = 1\f$, but none of the previous cases.
	 *  
	 *  3 - \f$\gamma_4 = \gamma_6 = 1\f$, but none of the previous cases.
	 * 
	 *  4 - None of the previous cases (the most general)
	 *
	 *  5 - special case of comparison to slow-rotation approximation:
	 *      this is identical to typeos=0, but using a modified
	 *      EOS-inversion method, namely we don't switch to a 1-fluid
	 *      EOS in 1-fluid regions.
	 * 
	 **/
	int typeos ; 

	/** Parameters needed for some inversions of the EOS.
	 *  In particular, it is used for type 4 EOS:
	 *  contains the relaxation parameter needed in the iteration
	 */
	double relax ;

	double precis ; ///< contains the precision required in zerosec_b
	
	///contains the precision required in the relaxation nbar_ent_p
	double ecart ; 

	
    // Constructors - Destructor
    // -------------------------
    public:
    
	/** Standard constructor.
	 *
	 *  The adiabatic indexes \f$\gamma_1\f$ and \f$\gamma_2\f$ are set to 2.
	 *  All other adiabatic indexes \f$\gamma_i\f$, \f$i\in 3\dots 6\f$ are
	 *  set to 1.
	 *  The individual particle masses \f$m_1\f$ and \f$m_2\f$ are set to the 
	 *  mean baryon mass \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$. 
	 *  The inversion parameters are set to their default values
	 *  (see hereafter the consrtuctor with all parameters).
	 *  
	 *  @param kappa1  pressure coefficient \f$\kappa_1\f$  
	 *  @param kappa2  pressure coefficient \f$\kappa_2\f$  
	 *  @param kappa3  pressure coefficient \f$\kappa_3\f$  
	 *  @param beta coefficient in the entrainment term \f$\beta\f$  
	 *		(cf. Eq.~(\ref{eeosbfpolye}))
	 *		[unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *		\f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ 
	 */
	Eos_bf_poly(double kappa1, double kappa2, double kappa3, double beta) ;

	/** Standard constructor with all parameters. 
	 * 
	 *  @param gamma1  adiabatic index \f$\gamma_1\f$ 
	 *  @param gamma2  adiabatic index \f$\gamma_2\f$ 
	 *  @param gamma3  adiabatic index \f$\gamma_3\f$ 
	 *  @param gamma4  adiabatic index \f$\gamma_4\f$ 
	 *  @param gamma5  adiabatic index \f$\gamma_5\f$ 
	 *  @param gamma6  adiabatic index \f$\gamma_6\f$ 
	 *				(cf. Eq.~(\ref{eeosbfpolye}))
	 *  @param kappa1  pressure coefficient \f$\kappa_1\f$  
	 *  @param kappa2  pressure coefficient \f$\kappa_2\f$  
	 *  @param kappa3  pressure coefficient \f$\kappa_3\f$  
	 *  @param beta coefficient in the entrainment term \f$\beta\f$  
	 *		(cf. Eq.~(\ref{eeosbfpolye}))
	 *		[unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *		\f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ 
	 *  @param mass1  individual particule mass \f$m_1\f$ (neutrons)  
	 *  @param mass2  individual particule mass \f$m_2\f$ (protons)  
	 *		[unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$]
	 *  @param relax relaxation parameter (see \c par_inv)
	 *  @param precis precision parameter for zerosec_b 
	 *                (see \c par_inv)
	 *  @param relax precision parameter for relaxation 
	 *               procedure (see \c par_inv)
	 *		 
	 */
	Eos_bf_poly(double gamma1, double gamma2, double gamma3,
		    double gamma4, double gamma5, double gamma6,
		    double kappa1, double kappa2, double kappa3,
		    double beta, double mass1=1, double mass2=1, 
		    double relax=0.5, double precis = 1.e-9,
		    double ecart = 1.e-8) ;	

	Eos_bf_poly(const Eos_bf_poly& ) ;	///< Copy constructor	
	
    protected:
	/** Constructor from a binary file (created by the function 
	 *  \c sauve(FILE*) ). 
	 *  This constructor is protected because any EOS construction
	 *  from a binary file must be done via the function 
	 * \c Eos_bifluid::eos_from_file(FILE*) . 
	 */
	Eos_bf_poly(FILE* ) ; 
	
	/** Constructor from a formatted file.
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function 
	 *  \c Eos_bifluid::eos_from_file(const char*) . 
	 *
	 */
	Eos_bf_poly (const char *fname) ; 
	
	/// The construction functions from a file
	friend Eos_bifluid* Eos_bifluid::eos_from_file(FILE* ) ; 
	friend Eos_bifluid* Eos_bifluid::eos_from_file(const char *fname ) ; 

        public:
	virtual ~Eos_bf_poly() ;			///< Destructor

    // Assignment
    // ----------
	/// Assignment to another \c Eos_bf_poly 
	void operator=(const Eos_bf_poly& ) ;


    // Miscellaneous
    // -------------
	public : 
	/// Comparison operator (egality)
	virtual bool operator==(const Eos_bifluid& ) const ; 

	/// Comparison operator (difference)
	virtual bool operator!=(const Eos_bifluid& ) const ; 
    
	/** Returns a number to identify the sub-classe of \c Eos_bifluid  
	 *  the object belongs to. 
	 */
	virtual int identify() const ; 

	/// Returns the adiabatic index \f$\gamma_1\f$ 
	double get_gam1() const {return gam1 ;};

	/// Returns the adiabatic index \f$\gamma_2\f$ 
	double get_gam2() const {return gam2 ;};

	/// Returns the adiabatic index \f$\gamma_3\f$ 
	double get_gam3() const {return gam3 ;};
	
	/// Returns the adiabatic index \f$\gamma_4\f$ 
	double get_gam4() const {return gam4 ;};
	
	/// Returns the adiabatic index \f$\gamma_5\f$ 
	double get_gam5() const {return gam5 ;};
	
	/// Returns the adiabatic index \f$\gamma_6\f$ 
	double get_gam6() const {return gam6 ;};
	
	/** Returns the pressure coefficient \f$\kappa_1\f$  
	 *  [unit: \f$\rho_{\rm nuc} c^2 \f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$.
	 */
	double get_kap1() const {return kap1 ;}; 

	/** Returns the pressure coefficient \f$\kappa_2\f$  
	 *  [unit: \f$\rho_{\rm nuc} c^2 \f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$.
	 */
	double get_kap2() const {return kap2 ;}; 

	/** Returns the pressure coefficient \f$\kappa_3\f$  
	 *  [unit: \f$\rho_{\rm nuc} c^2 \f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$.
	 */
	double get_kap3() const {return kap3 ;}; 

	/** Returns the coefficient \f$\beta\f$  
	 *  [unit: \f$\rho_{\rm nuc} c^2 \f$], where
	 *  \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$.
	 */
	double get_beta() const {return beta ;}; 

	// Returns (sub)type of bifluid-eos (member \c typeos})
	int get_typeos() const {return typeos;};

    protected:
	/** Computes the auxiliary quantities \c gam1m1 , \c gam2m1 
	 *  and \c gam3m1 
	 */
	void set_auxiliary() ; 
    
	/// Determines the type of the analytical EOS (see \c typeos )
	void determine_type() ;

    // Outputs
    // -------

    public: 
	virtual void sauve(FILE* ) const ;	///< Save in a file

    protected: 
	virtual ostream& operator>>(ostream &) const ;    ///< Operator >>


    // Computational functions
    // -----------------------

    public: 

 	/** Computes both baryon densities from the log-enthalpies
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 * 
	 */
    	virtual bool nbar_ent_p(const double ent1, const double ent2, 
				const double delta2, double& nbar1, 
				double& nbar2) const ; 
       
	/** Computes baryon density out of the log-enthalpy asuming
	 *  that only fluid 1 is present.
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p1(const double ent1) const  ;

	/** Computes baryon density out of the log-enthalpy assuming
	 *  that only fluid 2 is present.
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p2(const double ent2) const  ;

 	/** Computes the total energy density from the baryonic densities
	 *  and the relative velocity. 
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return energy density \f$\cal E\f$ [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double ener_nbar_p(const double nbar1, const double nbar2, 
				   const double delta2) const  ; 
       
 	/** Computes the pressure from the baryonic densities
	 *  and the relative velocity.
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return pressure \e p  [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double press_nbar_p(const double nbar1, const double nbar2, 
				    const double delta2) const ; 
     // Conversion functions
     // ---------------------

	/** Makes a translation from \c Eos_bifluid  to \c Eos . 
	 *
	 *  This is only useful for the construction of a 
	 *  \c Et_rot_bifluid 
	 *  star and ought not to be used in other situations.
	 */
	virtual Eos* trans2Eos() const ;
       
	/** Computes the derivative of the energy with respect to
	 * (baryonic density 1)\f$^2\f$.
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{11}=2\frac{\partial{\cal{E}}}{\partial{n_1^2}}\f$ 
	 */
	virtual double get_K11(const double n1, const double n2, const
			       double delta2)  const  ;

	/** Computes the derivative of the energy with respect to 
	 *  \f$x^2=n_1n_2\Gamma_\Delta\f$.
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{12}=\frac{\partial {\cal E}}{\partial (n_1n_2\Gamma_\Delta)}\f$ 
	 */
	virtual double get_K12(const double n1, const double n2,const
			       double delta2) const ;

	/** Computes the derivative of the energy/(baryonic density 2)\f$^2\f$.
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{22} = 2\frac{\partial {\cal E}}{\partial n_2^2}\f$ 
	 */
	virtual double get_K22(const double n1, const double n2, const
			       double delta2) const ;

};

		    //------------------------------------//
		    //	      class Eos_bf_poly_newt	  //
		    //------------------------------------//

/**
 * Analytic equation of state for two fluids (Newtonian case).
 * 
 * This equation of state (EOS) corresponds to two types of non-relativistic
 * particles of rest mass is \f$m_1\f$ and \f$m_2\f$,  whose total energy density 
 * \f$\cal{E}\f$ is related to their numerical densities \f$n_1\f$, \f$n_2\f$ and 
 * relative velocity \f$\Delta^2\f$
 * \f[
 * \Delta = \left( \vec{v}_n - \vec{v}_p \right)^2
 * \label{e:defdeltan}
 * \f]
 * by
 * \f[ \label{eeosbfnewte}
 *   {\cal{E}} = \frac{1}{2}\kappa_1 n_1^{\gamma_1} 
 *          \  + \frac{1}{2}\kappa_2 n_2^{\gamma_2} 
 *          \  + \kappa_3 n_1^{\gamma_3} n_2^{\gamma_4} 
 *          \  + \Delta^2 \beta n_1^{\gamma_5} n_2^{\gamma_6}\ .  
 * \f]
 * The non-relativistic chemical potentials are then
 * \f[ 
 * \mu_1 := {{\rm d}{\cal{E}} \over {\rm d}n_1} = \frac{1}{2}\gamma_1\kappa_1
 *         n_1^{\gamma_1-1} + \gamma_3 \kappa_3 
 *         n_1^{\gamma_3-1} n_2^{\gamma_4} + \Delta^2 \gamma_5 \beta 
 *         n_1^{\gamma_5-1} n_2^{\gamma_6}\ , 
 * \f]
 * \f[
 * \mu_2 := {{\rm d}{\cal{E}} \over {\rm d}n_2} = \frac{1}{2}\gamma_2\kappa_2
 *         n_2^{\gamma_2-1} + \gamma_4 \kappa_3 
 *         n_1^{\gamma_3} n_2^{\gamma_4-1} + \Delta^2 \gamma_6 \beta 
 *         n_1^{\gamma_5} n_2^{\gamma_6-1} \ .
 * \f]
 * The pressure is given by the (zero-temperature) First Law of Thermodynamics:
 * \f$p = \mu_1 n_1 + \mu_2 n_2 - {\cal E}\f$, so that
 * \f[ 
 *   p = \frac{1}{2} (\gamma_1 -1)\kappa_1 n_1^{\gamma_1} +
 *  \frac{1}{2}(\gamma_2-1)\kappa_2 n_2^{\gamma_2} + (\gamma_3 +\gamma_4
 *  -1)\kappa_3 n_1^{\gamma_3}n_2^{\gamma_4} + \Delta^2 \beta \left(
 *  (\gamma_5 + \gamma_6 - 1) n_1^{\gamma_5} n_2^{\gamma_6} \right) \ .  
 * \f]
 * The
 * specific enthalpies are related to the chemical potentials by
 * \f[
 * h_i = \frac{\mu_i}{m_i}
 * \f]
 *
 * From this system, the particle densities are obtained in term of 
 * the enthalpies. (The system is a linear one
 * if \f$\gamma_1 = \gamma_2 = 2\f$ and \f$\gamma_3 = \gamma_4 = \gamma_5 =
 * \gamma_6 = 1\f$). \ingroup (eos)
 *
 * The energy density \f$\cal E\f$and pressure \e p  can then be obtained.
 *
 */
class Eos_bf_poly_newt : public Eos_bf_poly {

    // Data :
    // -----

    // no new data with respect to Eos_bf_poly	

    // Constructors - Destructor
    // -------------------------
    public:
    
	/** Standard constructor.
	 *
	 *  The adiabatic indexes \f$\gamma_1\f$ and \f$\gamma_2\f$ are set to 2.
	 *  All other adiabatic indexes \f$\gamma_i\f$, \f$i\in 3\dots 6\f$ are
	 *  set to 1.
	 *  The individual particle masses \f$m_1\f$ and \f$m_2\f$ are set to the 
	 *  mean baryon mass \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$. 
	 *  The inversion parameters are set to their default values
	 *  (see hereafter the consrtuctor with all parameters).
	 *  
	 *  @param kappa1  pressure coefficient \f$\kappa_1\f$  
	 *  @param kappa2  pressure coefficient \f$\kappa_2\f$  
	 *  @param kappa3  pressure coefficient \f$\kappa_3\f$  
	 *  @param beta coefficient in the entrainment term \f$\beta\f$  
	 *		(cf. Eq.~(\ref{eeosbfpolye}))
	 *		[unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *		\f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ 
	 */
	Eos_bf_poly_newt(double kappa1, double kappa2, double kappa3,
		    double beta) ;

	/** Standard constructor with all parameters. 
	 * 
	 *  @param gamma1  adiabatic index \f$\gamma_1\f$ 
	 *  @param gamma2  adiabatic index \f$\gamma_2\f$ 
	 *  @param gamma3  adiabatic index \f$\gamma_3\f$ 
	 *  @param gamma4  adiabatic index \f$\gamma_4\f$ 
	 *  @param gamma5  adiabatic index \f$\gamma_5\f$ 
	 *  @param gamma6  adiabatic index \f$\gamma_6\f$ 
	 *				(cf. Eq.~(\ref{eeosbfpolye}))
	 *  @param kappa1  pressure coefficient \f$\kappa_1\f$  
	 *  @param kappa2  pressure coefficient \f$\kappa_2\f$  
	 *  @param kappa3  pressure coefficient \f$\kappa_3\f$  
	 *  @param beta coefficient in the entrainment term \f$\beta\f$  
	 *		(cf. Eq.~(\ref{eeosbfpolye}))
	 *		[unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *		\f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$ 
	 *  @param mass1  individual particule mass \f$m_1\f$ (neutrons)  
	 *  @param mass2  individual particule mass \f$m_2\f$ (protons)  
	 *  @param relax relaxation parameter (see \c par_inv)
	 *  @param precis precision parameter for zerosec_b 
	 *                (see \c par_inv)
	 *  @param relax precision parameter for relaxation 
	 *               procedure (see \c par_inv)
	 *		 
	 *		[unit: \f$m_B = 1.66\ 10^{-27} \ {\rm kg}\f$]
	 */
	Eos_bf_poly_newt(double gamma1, double gamma2, double gamma3,
			 double gamma4, double gamma5, double gamma6,
			 double kappa1, double kappa2, double kappa3,
			 double beta, double mass1, double mass2, 
			 double relax=0.5, double precis = 1.e-9,
			 double ecart = 1.e-8) ;	


	Eos_bf_poly_newt(const Eos_bf_poly_newt& ) ;	///< Copy constructor	
	
    protected:
	/** Constructor from a binary file (created by the function 
	 *  \c sauve(FILE*) ). 
	 *  This constructor is protected because any EOS construction
	 *  from a binary file must be done via the function 
	 * \c Eos_bifluid::eos_from_file(FILE*) . 
	 */
	Eos_bf_poly_newt(FILE* ) ; 
	
	/** Constructor from a formatted file.
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function 
	 *  \c Eos_bifluid::eos_from_file(const char* ) . 
	 */
	Eos_bf_poly_newt(const char *fname ) ; 
	
	/// The construction functions from a file
	friend Eos_bifluid* Eos_bifluid::eos_from_file(FILE* ) ; 
	friend Eos_bifluid* Eos_bifluid::eos_from_file(const char *fname) ; 

    public:
	virtual ~Eos_bf_poly_newt() ;			///< Destructor

    // Assignment
    // ----------
	/// Assignment to another \c Eos_bf_poly_newt 
	void operator=(const Eos_bf_poly_newt& ) ;


    // Miscellaneous
    // -------------

    public : 
	/// Comparison operator (egality)
	virtual bool operator==(const Eos_bifluid& ) const ; 

	/// Comparison operator (difference)
	virtual bool operator!=(const Eos_bifluid& ) const ; 
    
	/** Returns a number to identify the sub-classe of \c Eos_bifluid  
	 *  the object belongs to. 
	 */
	virtual int identify() const ; 

    // Outputs
    // -------

    public: 
	virtual void sauve(FILE* ) const ;	///< Save in a file

    protected: 
	virtual ostream& operator>>(ostream &) const ;    ///< Operator >>


    // Computational functions
    // -----------------------

    public: 

 	/** Computes both baryon densities from the log-enthalpies
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 * 
	 */
    	virtual bool nbar_ent_p(const double ent1, const double ent2, 
				const double delta2, double& nbar1, 
				double& nbar2) const ; 
       
	/** Computes baryon density out of the log-enthalpy asuming
	 *  that only fluid 1 is present (virtual function implemented 
	 *  in the derived classes).
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p1(const double ent1) const  ;

	/** Computes baryon density out of the log-enthalpy assuming
	 *  that only fluid 2 is present.
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p2(const double ent2) const  ;

 	/** Computes the total energy density from the baryonic densities
	 *  and the relative velocity. 
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return energy density \f$\cal E\f$ [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double ener_nbar_p(const double nbar1, const double nbar2, 
				   const double delta2) const  ; 
       
 	/** Computes the pressure from the baryonic densities
	 *  and the relative velocity.
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return pressure \e p  [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double press_nbar_p(const double nbar1, const double nbar2, 
				    const double delta2) const ; 
     // Conversion functions
     // ---------------------

	/** Makes a translation from \c Eos_bifluid  to \c Eos . 
	 *
	 *  This is only useful for the construction of a 
	 *  \c Et_rot_bifluid 
	 *  star and ought not to be used in other situations.
	 */
	virtual Eos* trans2Eos() const ;
       
	/** Computes the derivative of the energy with respect to
	 * (baryonic density 1)\f$^2\f$.
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{11}=2\frac{\partial{\cal{E}}}{\partial{n_1^2}}\f$ 
	 */
	virtual double get_K11(const double n1, const double n2, const
			       double delta2)  const  ;

	/** Computes the derivative of the energy with respect to 
	 *  \f$x^2=n_1n_2\Gamma_\Delta\f$.
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{12}=\frac{\partial {\cal E}}{\partial (n_1n_2\Gamma_\Delta)}\f$ 
	 */
	virtual double get_K12(const double n1, const double n2,const
			       double delta2) const ;

	/** Computes the derivative of the energy/(baryonic density 2)\f$^2\f$.
	 *
	 *  @param n1 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 1 at which the derivative 
	 *           is to be computed
	 *  @param n2 [input, unit \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *           baryonic density of fluid 2 at which the derivative 
	 *           is to be computed
	 *  @param x [input, unit \f$n_{\rm nuc}^2c^2\f$]
	 *           relative Lorentz factor\f$\times\f$both densities at which 
	 *           the derivative is to be computed
	 *
	 *  @return derivative \f$K^{22} = 2\frac{\partial {\cal E}}{\partial n_2^2}\f$ 
	 */
	virtual double get_K22(const double n1, const double n2, const
			       double delta2) const ;

};


/* Declaration of the new class Eos_bf_tabul derived from Eos_bifluid */

		    //------------------------------------//
		    //	      class Eos_bf_tabul	  //
		    //------------------------------------//

/**
 * Class for a two-fluid (tabulated) equation of state. 
 *
 * This EOS depends on three variables \f$(\Delta^2, \mu_n, \mu_p )\f$: relative velocity 
 * between the two fluids and the two enthalpies (for neutrons and protons).
 * 
 * The interpolation through the tables is
 * a cubic Hermite interpolation in \f$\mu_n\f$ and \f$\mu_p\f$ which is
 * thermodynamically consistent, i.e. preserves the
 * Gibbs-Duhem relation. It is defined in
 * [Nozawa, Stergioulas, Gourgoulhon \& Eriguchi,
 * \a Astron. \a Astrophys. Suppl. Ser.  \b 132 , 431 (1998)],
 * and derives from a general technique presented in
 * [Swesty, \a J. \a Comp. \a Phys.  \b 127 , 118 (1996)].
 * The value of \f$\Delta^{2}\f$ being calculated with a first order precision, 
 * we use a linear interpolation in \f$\Delta^{2}\f$.
 * 
 */

class Eos_bf_tabul : public Eos_bifluid {

    // Data :
    // -----

    protected: 
	/// Name of the file containing the tabulated data (be careful, Eos_bifluid uses char*)
        string tablename ; 
	
	/// Authors
        string authors ; 
	
      	/// Lower boundary of the relative velocity interval --> 0 ?
    	double delta_car_min ;
    	
    	/// Upper boundary of the relative velocity interval --> 1 ?
	/// or a maximal value until which the linear approximation in \Delta^{2} is fine ?
    	double delta_car_max ;
    	

      	/// Lower boundary of the log-enthalpy interval (fluid 1 = n)
    	double ent1_min ;
    	
    	/// Upper boundary of the log-enthalpy interval (fluid 1 = n)
    	double ent1_max ;
    	
	/// Lower boundary of the log-enthalpy interval (fluid 2 = p)
    	double ent2_min ;
    	
    	/// Upper boundary of the log-enthalpy interval (fluid 2 = p)
    	double ent2_max ;

    	/**
	 * Table of \f$ \log H_n \f$ where 
	 * \f$ H_n = \ln \left( \frac{\mu_n}{m_n} \right) \f$.
	 */
    	Tbl* logent1 ;
    	
	/** 
	 * Table of \f$ \log H_p \f$ where 
	 * \f$ H_p = \ln \left( \frac{\mu_p}{m_p} \right) \f$.
	 */
    	Tbl* logent2 ;

        /// Table of \f$ \Delta^{2} \f$
    	Tbl* delta_car ; 
	
	/// Table of \f$ \log \Psi \f$
    	Tbl* logp ;

    	/// Table of \f$ \frac {\partial \log \Psi } {\partial \log H_n}\f$
    	Tbl* dlpsdlent1 ;
    	
	/// Table of \f$ \frac {\partial \log \Psi } {\partial \log H_p}\f$
    	Tbl* dlpsdlent2 ;

	/// Table of \f$ \frac {\partial^2 \log \Psi} {\partial \log H_n \partial \log H_p} \f$
    	Tbl* d2lpsdlent1dlent2 ;

	/// Table of \f$ \frac {\partial^2 \log \Psi} {\partial \log H_n \partial \log H_n} \f$
    	Tbl* d2lpsdlent1dlent1 ;
	/// Table of \f$ \frac {\partial^2 \log \Psi} {\partial \log H_p \partial \log H_p} \f$
    	Tbl* d2lpsdlent2dlent2 ;


	/// Table of \f$ \frac {\partial \log \Psi}{\partial \Delta^{2}}  \f$  
    	Tbl* dlpsddelta_car ;

	/// Table of \f$ \frac {\partial^2 \log \Psi} {\partial \log H_n \partial \Delta^{2}} \f$
    	Tbl* d2lpsdlent1ddelta_car ;

	/// Table of \f$ \frac {\partial^2 \log \Psi} {\partial \log H_p \partial \Delta^{2}} \f$
    	Tbl* d2lpsdlent2ddelta_car ;

	/// if necessary for the interpolation to find alpha (derivee seconde croisee)
	/// ie, if it's possible to calculate it (when the eos is calculated) 
	/// Table of \f$ \frac {\partial^3 \log \Psi} {\partial \log H_p \partial \log H_n  \partial \Delta^{2}} \f$
    	Tbl* d3lpsdlent1dlent2ddelta_car ;


	// to save the limit curve of nn = 0
	Tbl* delta_car_n0 ;
	Tbl* mu1_n0 ;
	Tbl* mu2_n0 ;
	// to save the limit curve of np = 0
	Tbl* delta_car_p0 ;
	Tbl* mu1_p0 ;
	Tbl* mu2_p0 ;

	// to save the 1 fluid table //
	Tbl* mu1_N ;
	Tbl* n_n_N ;
	Tbl* press_N ;
	Tbl* mu2_P ;
	Tbl* n_p_P ;
	Tbl* press_P ;


   // Constructors - Destructor     
   // -------------------------
     protected:

	/** Standard constructor.
	 *
	 * @param name_i Name of the equation of state
	 * @param table Name of the file containing the EOS table
	 * @param path Path to the directory containing the EOS file
	 * @param mass1 Mass of particles in fluid 1 (neutrons)
	 * @param mass2 Mass of particles in fluid 2 (protons)
	 */
	Eos_bf_tabul(const char* name_i, const char* table, const char* path, double mass1, double mass2) ;	

	/** Standard constructor from the full filename.
	 *
	 * @param name_i Name of the equation of state
	 * @param file_name Full name of the file containing the EOS table
	 *              (including the absolute path).
	 * @param mass1 Mass of particles in fluid 1 (neutrons)
	 * @param mass2 Mass of particles in fluid 2 (protons)
	 */
	Eos_bf_tabul(const char* name_i, const char* file_name, double mass1, double mass2) ;

    private:
	Eos_bf_tabul(const Eos_bf_tabul& ) ;	///< Copy constructor	
	
    protected:
	
	/** Constructor from a binary file (created by the function
	 *  \c sauve(FILE*) ).
	 *  This constructor is protected because any EOS construction
	 *  from a binary file must be done via the function
	 * \c Eos_bifluid::eos_from_file(FILE*) .
	 */
	Eos_bf_tabul(FILE* ) ;
	
	/** Constructor from a formatted file.
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function
	 *  \c  Eos_bifluid::eos_from_file(ifstream\& ) .
	 *
	 *   @param ist input file stream containing a name as first line
	 *		and the path to the directory containing the EOS file
	 *		as second line
	 *   @param table Name of the file containing the EOS table
	 */
	Eos_bf_tabul(ifstream& ist, const char* table) ;
	
	/** Constructor from a formatted file.
	 *  This constructor is protected because any EOS construction
	 *  from a formatted file must be done via the function
	 *  \c  Eos::eos_from_file(ifstream\& ) .
	 *
	 *   @param ist input file stream containing a name as first line
	 *		and the full filename (including the path) containing 
	 *              the EOS file as second line
	 */
	Eos_bf_tabul(ifstream& ist) ;
	
	/// The construction functions from a file
	friend Eos_bifluid* Eos_bifluid::eos_from_file(FILE* ) ;
	friend Eos_bifluid* Eos_bifluid::eos_from_file(ifstream& ) ;

      public:
	virtual ~Eos_bf_tabul() ;			///< Destructor

    // Assignment
    // ----------
     private :
	/// Assignment to another \c Eos_bf_tabul 
	void operator=(const Eos_bf_tabul& ) ;


  // Miscellaneous
    // -------------

    protected: 	
    	/** Reads the file containing the table and initializes
    	 *  the arrays logent1, \c logent2, \c delta_car, \c logp, \c dlpsdlent1, \c dlpsdlent2,
	 *  \c d2lpsdlent1dlent2, \c dlpsddelta_car, \c d2lpsdlent1ddelta_car, 
	 *  \c d2lpsdlent2ddelta_car, \c d3lpsdlent1dlent2ddelta_car
	 **/
    	void read_table() ;

    public : 
	/// Comparison operator (egality)
	virtual bool operator==(const Eos_bifluid& ) const ; 

	/// Comparison operator (difference)
	virtual bool operator!=(const Eos_bifluid& ) const ; 
    
	/** Returns a number to identify the sub-classe of \c  Eos  the
	 *  object belongs to.
	 */
	virtual int identify() const ;
   

    // Outputs
    // -------

    public: 
	virtual void sauve(FILE* ) const ;	///< Save in a file


    protected: 
	virtual ostream& operator>>(ostream &) const ;    ///< Operator >>


    // Computational functions
    // -----------------------

    public: 
	/**  General computational method for \c Cmp 's, it computes
	 *   both baryon densities, energy and pressure profiles.
	 * 
	 *  @param ent1 [input] the first log-enthalpy field \f$H_1\f$.  
	 *  @param ent2 [input] the second log-enthalpy field \f$H_2\f$.
	 *  @param delta2 [input] the relative velocity field \f$\Delta^2 \f$
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param ener [output] total energy density \f$\cal E\f$ 
	 *                             of both fluids together
	 *  @param press [output] pressure \e p  of both fluids together
	 *  @param K_nn [output] coefficient \f$ K_{nn} \f$  
	 *  @param K_np [output] coefficient \f$ K_{np} \f$  
	 *  @param K_pp [output] coefficient \f$ K_{pp} \f$ 
	 *  @param nzet  [input] number of domains where \c resu  is to be
	 *	computed. 
	 *  @param l_min [input] index of the innermost domain is which 
	 *      \c resu  is to be computed [default value: 0]; 
	 *      \c resu  is computed only in domains whose indices are 
	 *      in \c [l_min,l_min+nzet-1] . In the other
	 *	domains, it is set to zero. 
	 */
	void calcule_interpol(const Cmp& ent1, const Cmp& ent2, const Cmp& delta2,
			      Cmp& nbar1, Cmp& nbar2, Cmp& ener, Cmp& press, 
			      Cmp& K_nn, Cmp& K_np, Cmp& K_pp,
			      int nzet, int l_min = 0) const ; 

 	/** Computes both baryon densities from the log-enthalpies
	 * 
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ 
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$ 
	 * 
	 *  @param nbar1 [output] baryonic density of the first fluid
	 *  @param nbar2 [output] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 * 
	 */
    	virtual bool nbar_ent_p(const double ent1, const double ent2, 
				const double delta2, double& nbar1, 
				double& nbar2) const ; 
       
	/** Computes baryon density out of the log-enthalpy asuming
	 *  that only fluid 1 is present.
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p1(const double ent1) const  ;

	/** Computes baryon density out of the log-enthalpy assuming
	 *  that only fluid 2 is present.
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double nbar_ent_p2(const double ent2) const  ;

 	/** Computes the total energy density from the baryonic densities
	 *  and the relative velocity. 
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return energy density \f$\cal E\f$ [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double ener_nbar_p(const double nbar1, const double nbar2, 
				   const double delta2) const  ; 
       
 	/** Computes the pressure from the baryonic densities
	 *  and the relative velocity.
	 * 
	 *  @param nbar1 [input] baryonic density of the first fluid
	 *  @param nbar2 [input] baryonic density of the second fluid
	 *  [unit: \f$n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}\f$]
	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$\Delta^2\f$ 
	 * 
	 *  @return pressure \e p  [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double press_nbar_p(const double nbar1, const double nbar2, 
				    const double delta2) const ; 
       
         /** Computes the derivative of the energy with respect to
	 * (baryonic density 1)\f$^2\f$. 
	 *
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ of fluid 1 at 		
	 *  which the derivative is to be computed
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ of fluid 2 at 		
	 *  which the derivative is to be computed 
 	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$ at 	
	 *  which the derivative is to be computed 
	 *
	 *  @return derivative \f$K^{11}=2\frac{\partial{\cal{E}}}{\partial{n_1^2}}\f$ 
	 */
	virtual double get_K11(const double delta2, const double ent1, 
				const double ent2)  const  ;

	/** Computes the derivative of the energy with respect to 
	 *  \f$x^2=n_1n_2\Gamma_\Delta\f$.
	 *
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ of fluid 1 at 		
	 *  which the derivative is to be computed
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ of fluid 2 at 		
	 *  which the derivative is to be computed 
 	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$ at 	
	 *  which the derivative is to be computed  
	 *
	 *  @return derivative \f$K^{12}=\frac{\partial {\cal E}}{\partial (n_1n_2\Gamma_\Delta)}\f$ 
	 */
	virtual double get_K12(const double delta2, const double ent1 , 
				const double ent2)  const  ;

	/** Computes the derivative of the energy/(baryonic density 2)\f$^2\f$.
	 *
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ of fluid 1 at 	
	 *  which the derivative is to be computed
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ of fluid 2 at 	
	 *  which the derivative is to be computed 
 	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$ at 
	 *  which the derivative is to be computed  
	 *
	 *  @return derivative \f$K^{22} = 2\frac{\partial {\cal E}}{\partial n_2^2}\f$ 
	 */
	virtual double get_K22(const double delta2, const double ent1, 
				const double ent2)  const  ;
     
 	/** Computes the total energy density from the baryonic log-enthalpies
	 *  and the relative velocity.
	 *
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ of fluid 1 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ of fluid 2 
 	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$ 
	 *
	 *  @return energy density \e e  [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double ener_ent_p(const double ent1, const double ent2, 
				const double delta_car) const ;

 	/** Computes the pressure from the baryonic log-enthalpies
	 *  and the relative velocity. Computes the pressure from the log-enthalpy.
	 *
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ of fluid 1 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ of fluid 2 
 	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$
	 *
	 *  @return pressure \e p  [unit: \f$\rho_{\rm nuc} c^2\f$], where
	 *      \f$\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3\f$
	 */
    	virtual double press_ent_p(const double ent1, const double ent2, 
				const double delta_car) const ;



	/** Computes the pressure from the baryonic log-enthalpies asuming
	 *  that only fluid 1 is present.
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double press_ent_p1(const double ent1) const  ;

	/** Computes the pressure from the baryonic log-enthalpies assuming
	 *  that only fluid 2 is present.
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ 
	 *  @return nbar1 baryonic density of the first fluid
	 */
	virtual double press_ent_p2(const double ent2) const  ;



         /** Computes alpha, the derivative of the total energy density 
	 * with respect to \f$ \Delta^2\f$ from the baryonic log-enthalpies
	 *  and the relative velocity. 
	 *
	 *  @param ent1 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_1\f$ of fluid 1 
	 *  @param ent2 [input,  unit: \f$c^2\f$] log-enthalpy \f$H_2\f$ of fluid 2 
 	 *  @param delta2 [input,  unit: \f$c^2\f$] relative velocity \f$ \Delta^2\f$
	 *
	 *  @return \alpha  
	 */
	virtual double alpha_ent_p(const double ent1, const double ent2, 
				const double delta_car) const ;


	// Conversion function
	// ---------------------

	/** Makes a translation from \c Eos_bifluid  to \c Eos . 
	 *
	 *  This is only useful for the construction of a 
	 *  \c Et_rot_bifluid star and ought not to be used in other situations.
	 */
	virtual Eos* trans2Eos() const ;
       
};


}
#endif