File: scalar.h

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (1989 lines) | stat: -rw-r--r-- 80,190 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
/*
 *  Definition of Lorene class Scalar
 *
 */

/*
 *   Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
 *   
 *   Copyright (c) 1999-2000 Jean-Alain Marck (for previous class Cmp)
 *   Copyright (c) 1999-2002 Eric Gourgoulhon (for previous class Cmp)
 *   Copyright (c) 1999-2001 Philippe Grandclement (for previous class Cmp)
 *   Copyright (c) 2000-2002 Jerome Novak (for previous class Cmp)
 *   Copyright (c) 2000-2001 Keisuke Taniguchi (for previous class Cmp)
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


#ifndef __SCALAR_H_ 
#define __SCALAR_H_ 


/*
 * $Id: scalar.h,v 1.94 2015/12/18 15:52:51 j_novak Exp $
 * $Log: scalar.h,v $
 * Revision 1.94  2015/12/18 15:52:51  j_novak
 * New method is_nan() for class Scalar.
 *
 * Revision 1.93  2015/09/10 13:28:05  j_novak
 * New methods for the class Hot_Eos
 *
 * Revision 1.92  2014/10/13 08:52:36  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.91  2013/06/05 15:06:10  j_novak
 * Legendre bases are treated as standard bases, when the multi-grid
 * (Mg3d) is built with BASE_LEG.
 *
 * Revision 1.90  2013/01/11 15:44:54  j_novak
 * Addition of Legendre bases (part 2).
 *
 * Revision 1.89  2012/12/19 13:59:56  j_penner
 * added a few lines to the documentation for scalar_match_tau function
 *
 * Revision 1.88  2012/01/17 15:05:46  j_penner
 * *** empty log message ***
 *
 * Revision 1.87  2012/01/17 10:16:27  j_penner
 * functions added: sarra_filter_r, sarra_filter_r_all_domains, Heaviside
 *
 * Revision 1.86  2011/04/08 13:13:09  e_gourgoulhon
 * Changed the comment of function val_point to indicate specifically the
 * division by r^dzpuis in the compactified external domain.
 *
 * Revision 1.85  2008/09/29 13:23:51  j_novak
 * Implementation of the angular mapping associated with an affine
 * mapping. Things must be improved to take into account the domain index.
 *
 * Revision 1.84  2008/09/22 19:08:01  j_novak
 * New methods to deal with boundary conditions
 *
 * Revision 1.83  2008/05/24 15:05:22  j_novak
 * New method Scalar::match_tau to match the output of an explicit time-marching scheme with the tau method.
 *
 * Revision 1.82  2007/12/21 16:06:16  j_novak
 * Methods to filter Tensor, Vector and Sym_tensor objects.
 *
 * Revision 1.81  2007/10/31 10:33:11  j_novak
 * Added exponential filters to smooth Gibbs-type phenomena.
 *
 * Revision 1.80  2007/06/21 19:56:36  k_taniguchi
 * Introduction of another filtre_r.
 *
 * Revision 1.79  2007/05/06 10:48:08  p_grandclement
 * Modification of a few operators for the vorton project
 *
 * Revision 1.78  2007/01/16 15:05:59  n_vasset
 * New constructor (taking a Scalar in mono-domain angular grid for
 * boundary) for function sol_elliptic_boundary
 *
 * Revision 1.77  2006/05/26 09:00:09  j_novak
 * New members for multiplication or division by cos(theta).
 *
 * Revision 1.76  2005/11/30 13:48:06  e_gourgoulhon
 * Replaced M_PI/2 by 1.57... in argument list of sol_elliptic_sin_zec
 * (in order not to require the definition of M_PI).
 *
 * Revision 1.75  2005/11/30 11:09:03  p_grandclement
 * Changes for the Bin_ns_bh project
 *
 * Revision 1.74  2005/11/17 15:29:46  e_gourgoulhon
 * Added arithmetics with Mtbl.
 *
 * Revision 1.73  2005/10/25 08:56:34  p_grandclement
 * addition of std_spectral_base in the case of odd functions near the origin
 *
 * Revision 1.72  2005/09/07 13:10:47  j_novak
 * Added a filter setting to zero all mulitpoles in a given range.
 *
 * Revision 1.71  2005/08/26 14:02:38  p_grandclement
 * Modification of the elliptic solver that matches with an oscillatory exterior solution
 * small correction in Poisson tau also...
 *
 * Revision 1.70  2005/08/25 12:14:07  p_grandclement
 * Addition of a new method to solve the scalar Poisson equation, based on a multi-domain Tau-method
 *
 * Revision 1.69  2005/06/09 07:56:25  f_limousin
 * Implement a new function sol_elliptic_boundary() and
 * Vector::poisson_boundary(...) which solve the vectorial poisson
 * equation (method 6) with an inner boundary condition.
 *
 * Revision 1.68  2005/06/08 12:35:18  j_novak
 * New method for solving divergence-like ODEs.
 *
 * Revision 1.67  2005/05/20 14:42:30  j_novak
 * Added the method Scalar::get_spectral_base().
 *
 * Revision 1.66  2005/04/04 21:28:57  e_gourgoulhon
 * Added argument lambda to method poisson_angu
 * to deal with the generalized angular Poisson equation:
 *    Lap_ang u + lambda u = source.
 *
 * Revision 1.65  2004/12/14 09:09:39  f_limousin
 * Modif. comments.
 *
 * Revision 1.64  2004/11/23 12:41:53  f_limousin
 * Intoduce function poisson_dir_neu(...) to solve a scalar poisson
 * equation with a mixed boundary condition (Dirichlet + Neumann).
 *
 * Revision 1.63  2004/10/11 15:09:00  j_novak
 * The radial manipulation functions take Scalar as arguments, instead of Cmp.
 * Added a conversion operator from Scalar to Cmp.
 * The Cmp radial manipulation function make conversion to Scalar, call to the
 * Map_radial version with a Scalar argument and back.
 *
 * Revision 1.62  2004/08/24 09:14:40  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.61  2004/07/27 08:24:26  j_novak
 * Modif. comments
 *
 * Revision 1.60  2004/07/26 16:02:21  j_novak
 * Added a flag to specify whether the primitive should be zero either at r=0
 * or at r going to infinity.
 *
 * Revision 1.59  2004/07/06 13:36:27  j_novak
 * Added methods for desaliased product (operator |) only in r direction.
 *
 * Revision 1.58  2004/06/22 08:49:57  p_grandclement
 * Addition of everything needed for using the logarithmic mapping
 *
 * Revision 1.57  2004/06/14 15:24:23  e_gourgoulhon
 * Added method primr (radial primitive).
 *
 * Revision 1.56  2004/06/11 14:29:56  j_novak
 * Scalar::multipole_spectrum() is now a const method.
 *
 * Revision 1.55  2004/05/24 14:07:31  e_gourgoulhon
 * Method set_domain now includes a call to del_deriv() for safety.
 *
 * Revision 1.54  2004/05/07 11:26:10  f_limousin
 * New method filtre_r(int*)
 *
 * Revision 1.53  2004/03/22 13:12:43  j_novak
 * Modification of comments to use doxygen instead of doc++
 *
 * Revision 1.52  2004/03/17 15:58:47  p_grandclement
 * Slight modification of sol_elliptic_no_zec
 *
 * Revision 1.51  2004/03/11 12:07:30  e_gourgoulhon
 * Added method visu_section_anim.
 *
 * Revision 1.50  2004/03/08 15:45:38  j_novak
 * Modif. comment
 *
 * Revision 1.49  2004/03/05 15:09:40  e_gourgoulhon
 * Added method smooth_decay.
 *
 * Revision 1.48  2004/03/01 09:57:02  j_novak
 * the wave equation is solved with Scalars. It now accepts a grid with a
 * compactified external domain, which the solver ignores and where it copies
 * the values of the field from one time-step to the next.
 *
 * Revision 1.47  2004/02/27 09:43:58  f_limousin
 * New methods filtre_phi(int) and filtre_theta(int).
 *
 * Revision 1.46  2004/02/26 22:46:26  e_gourgoulhon
 * Added methods derive_cov, derive_con and derive_lie.
 *
 * Revision 1.45  2004/02/21 17:03:49  e_gourgoulhon
 * -- Method "point" renamed "val_grid_point".
 * -- Method "set_point" renamed "set_grid_point".
 *
 * Revision 1.44  2004/02/19 22:07:35  e_gourgoulhon
 * Added argument "comment" in method spectral_display.
 *
 * Revision 1.43  2004/02/11 09:47:44  p_grandclement
 * Addition of a new elliptic solver, matching with the homogeneous solution
 * at the outer shell and not solving in the external domain (more details
 * coming soon ; check your local Lorene dealer...)
 *
 * Revision 1.42  2004/01/28 16:46:22  p_grandclement
 * Addition of the sol_elliptic_fixe_der_zero stuff
 *
 * Revision 1.41  2004/01/28 13:25:40  j_novak
 * The ced_mult_r arguments have been suppressed from the Scalar::*dsd* methods.
 * In the div/mult _r_dzpuis, there is no more default value.
 *
 * Revision 1.40  2004/01/28 10:39:17  j_novak
 * Comments modified.
 *
 * Revision 1.39  2004/01/27 15:10:01  j_novak
 * New methods Scalar::div_r_dzpuis(int) and Scalar_mult_r_dzpuis(int)
 * which replace div_r_inc*. Tried to clean the dzpuis handling.
 * WARNING: no testing at this point!!
 *
 * Revision 1.38  2004/01/23 13:25:44  e_gourgoulhon
 * Added methods set_inner_boundary and set_outer_boundary.
 * Methods set_val_inf and set_val_hor, which are particular cases of
 * the above, have been suppressed.
 *
 * Revision 1.37  2004/01/22 16:10:09  e_gourgoulhon
 * Added (provisory) method div_r_inc().
 *
 * Revision 1.36  2003/12/16 06:32:20  e_gourgoulhon
 * Added method visu_box.
 *
 * Revision 1.35  2003/12/14 21:46:35  e_gourgoulhon
 * Added argument start_dx in visu_section.
 *
 * Revision 1.34  2003/12/11 16:19:38  e_gourgoulhon
 * Added method visu_section for visualization with OpenDX.
 *
 * Revision 1.33  2003/12/11 14:48:47  p_grandclement
 * Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
 *
 * Revision 1.32  2003/11/13 13:43:53  p_grandclement
 * Addition of things needed for Bhole::update_metric (const Etoile_bin&, double, double)
 *
 * Revision 1.31  2003/11/06 14:43:37  e_gourgoulhon
 * Gave a name to const arguments in certain method prototypes (e.g.
 * constructors) to correct a bug of DOC++.
 *
 * Revision 1.30  2003/11/04 22:55:50  e_gourgoulhon
 * Added new methods mult_cost(), mult_sint() and div_sint().
 *
 * Revision 1.29  2003/10/29 13:09:11  e_gourgoulhon
 * -- Added integer argument to derivative functions dsdr, etc...
 *    so that one can choose the dzpuis of the result (default=2).
 * -- Change of method name: laplacien --> laplacian.
 *
 * Revision 1.28  2003/10/29 11:00:42  e_gourgoulhon
 * Virtual functions dec_dzpuis and inc_dzpuis have now an integer argument to
 *  specify by which amount dzpuis is to be increased.
 * Accordingly virtual methods dec2_dzpuis and inc2_dzpuis have been suppressed.
 *
 * Revision 1.27  2003/10/20 14:26:02  j_novak
 * New assignement operators.
 *
 * Revision 1.26  2003/10/19 19:46:33  e_gourgoulhon
 * -- Method spectral_display now virtual (from Tensor), list of argument
 *    changed.
 *
 * Revision 1.25  2003/10/17 13:46:14  j_novak
 * The argument is now between 1 and 3 (instead of 0->2)
 *
 * Revision 1.24  2003/10/16 15:23:41  e_gourgoulhon
 * Name of method div_r_ced() changed to div_r_inc2().
 * Name of method div_rsint_ced() changed to div_rsint_inc2().
 *
 * Revision 1.23  2003/10/15 21:10:11  e_gourgoulhon
 * Added method poisson_angu().
 *
 * Revision 1.22  2003/10/15 16:03:35  j_novak
 * Added the angular Laplace operator for Scalar.
 *
 * Revision 1.21  2003/10/15 10:29:05  e_gourgoulhon
 * Added new members p_dsdt and p_stdsdp.
 * Added new methods dsdt(), stdsdp() and div_tant().
 *
 * Revision 1.20  2003/10/13 13:52:39  j_novak
 * Better managment of derived quantities.
 *
 * Revision 1.19  2003/10/10 15:57:27  j_novak
 * Added the state one (ETATUN) to the class Scalar
 *
 * Revision 1.18  2003/10/08 14:24:08  j_novak
 * replaced mult_r_zec with mult_r_ced
 *
 * Revision 1.17  2003/10/06 16:16:02  j_novak
 * New constructor from a Tensor.
 *
 * Revision 1.16  2003/10/06 13:58:45  j_novak
 * The memory management has been improved.
 * Implementation of the covariant derivative with respect to the exact Tensor
 * type.
 *
 * Revision 1.15  2003/10/05 21:06:31  e_gourgoulhon
 * - Added new methods div_r_ced() and div_rsint_ced().
 * - Added new virtual method std_spectral_base()
 * - Removed method std_spectral_base_scal()
 *
 * Revision 1.14  2003/10/01 13:02:58  e_gourgoulhon
 * Suppressed the constructor from Map* .
 *
 * Revision 1.13  2003/09/29 12:52:56  j_novak
 * Methods for changing the triad are implemented.
 *
 * Revision 1.12  2003/09/25 09:33:36  j_novak
 * Added methods for integral calculation and various manipulations
 *
 * Revision 1.11  2003/09/25 09:11:21  e_gourgoulhon
 * Added functions for radial operations (divr, etc...)
 *
 * Revision 1.10  2003/09/25 08:55:23  e_gourgoulhon
 * Added members raccord*.
 *
 * Revision 1.9  2003/09/25 08:50:11  j_novak
 * Added the members import
 *
 * Revision 1.8  2003/09/25 08:13:51  j_novak
 * Added method for calculating derivatives
 *
 * Revision 1.7  2003/09/25 07:59:26  e_gourgoulhon
 * Added prototypes for PDE resolutions.
 *
 * Revision 1.6  2003/09/25 07:17:58  j_novak
 * Method asymptot implemented.
 *
 * Revision 1.5  2003/09/24 20:53:38  e_gourgoulhon
 * Added  -- constructor by conversion from a Cmp
 *        -- assignment from Cmp
 *
 * Revision 1.4  2003/09/24 15:10:54  j_novak
 * Suppression of the etat flag in class Tensor (still present in Scalar)
 *
 * Revision 1.3  2003/09/24 12:01:44  j_novak
 * Added friend functions for math.
 *
 * Revision 1.2  2003/09/24 10:22:01  e_gourgoulhon
 * still in progress...
 *
 * Revision 1.1  2003/09/22 12:50:47  e_gourgoulhon
 * First version: not ready yet!
 *
 *
 * $Header: /cvsroot/Lorene/C++/Include/scalar.h,v 1.94 2015/12/18 15:52:51 j_novak Exp $
 *
 */

// Headers Lorene 
#include "valeur.h"
#include "tensor.h"

namespace Lorene {
class Param ; 
class Cmp ;
class Param_elliptic ;

/**
 * Tensor field of valence 0 (or component of a tensorial field).
 * \ingroup (tensor)
 * 
 * 
 */

class Scalar : public Tensor {
  
  // Data : 
  // -----
 protected:
  
  /** The logical state \c ETATNONDEF  (undefined), \c ETATZERO  (null),
   *  \c ETATUN  (one), or \c ETATQCQ (ordinary).
   */
  int etat ; 
  
  /**
   * Power of \e r  by which the quantity represented by \c this  
   * must be divided in the  compactified external domain (CED) in order 
   * to get the correct physical values
   */
  int dzpuis ;	
  
  Valeur va ;		///< The numerical value of the \c Scalar    
  
  // Derived data : 
  // ------------
 protected:
  /// Pointer on \f$\partial/\partial r\f$ of \c *this  (0x0 if not up to date)
  mutable Scalar* p_dsdr ;	

  /** Pointer on \f$1/r \partial/\partial \theta\f$ of \c *this  
   *  (0x0 if not up to date)
   */
  mutable Scalar* p_srdsdt ;	

  /** Pointer on \f$1/(r\sin\theta) \partial/\partial \phi\f$ of \c *this 
   *  (0x0 if not up to date)
   */
  mutable Scalar* p_srstdsdp ;

  /// Pointer on \f$\partial/\partial \theta\f$ of \c *this  (0x0 if not up to date)
  mutable Scalar* p_dsdt ;	

  /** Pointer on \f$1/\sin\theta \partial/\partial \phi\f$ of \c *this 
   *  (0x0 if not up to date)
   */
  mutable Scalar* p_stdsdp ;	
  
  /** Pointer on \f$\partial/\partial x\f$ of \c *this ,
   *  where \f$x=r\sin\theta \cos\phi\f$ (0x0 if not up to date)
   */
  mutable Scalar* p_dsdx ;	
  
  /** Pointer on \f$\partial/\partial y\f$ of \c *this ,
   *  where \f$y=r\sin\theta \sin\phi\f$(0x0 if not up to date)
   */
  mutable Scalar* p_dsdy ;	

  /** Pointer on \f$\partial/\partial z\f$ of \c *this ,
   *  where \f$z=r\cos\theta\f$ (0x0 if not up to date)
   */
  mutable Scalar* p_dsdz ;	
  
  /** Pointer on the Laplacian of \c *this  (0x0 if not up to date)
   */
  mutable Scalar* p_lap ;	
  
  /** Pointer on the Laplacian of \c *this  (0x0 if not up to date)
   */
  mutable Scalar* p_lapang ;	
   
  /// Pointer on \f$\partial/\partial radial \f$ of \c *this  
  mutable Scalar* p_dsdradial ;	

  /// Pointer on \f$\partial/\partial \rho \f$ of \c *this  
  mutable Scalar* p_dsdrho ;	

  /** Power of \e r  by which the last computed Laplacian has been 
   *  multiplied in the compactified external domain.  
   */
  mutable int ind_lap ; 

  /** Pointer on the space integral of \c *this  (values in each 
   *  domain) (0x0 if not up to date)
   */
  mutable Tbl* p_integ ; 
  
  // Constructors - Destructor
  // -------------------------
  
 public:
  
  explicit Scalar(const Map& mpi) ;	///< Constructor from mapping

  /// Constructor from a Tensor (must be of valence 0)
  Scalar(const Tensor& a) ;     

  Scalar(const Scalar& a) ;		///< Copy constructor
  
  Scalar(const Cmp& a) ;	///< Constructor by conversion of a Cmp
  
  /// Constructor from a file (see \c sauve(FILE*) )
  Scalar(const Map&, const Mg3d&, FILE* ) ;    		
  
  virtual ~Scalar() ;			///< Destructor
  
  
  // Memory management
  // -----------------
 protected:
  void del_t() ;		    ///< Logical destructor
  virtual void del_deriv() const;	    ///< Logical destructor of the derivatives
  void set_der_0x0() const;	    ///< Sets the pointers for derivatives to 0x0
  
 public:
  
  /**
   * Sets the logical state to \c ETATNONDEF  (undefined). 
   * Calls the logical destructor of the \c Valeur \c va   
   * deallocates the memory occupied by all the derivatives. 
   */
  virtual void set_etat_nondef() ;   
  
  /**
   * Sets the logical state to \c ETATZERO  (zero). 
   * Calls the logical destructor of the \c Valeur \c va  and
   * deallocates the memory occupied by all the derivatives. 
   */
  virtual void set_etat_zero() ;	    
  
  /**
   * Sets the logical state to \c ETATQCQ  (ordinary state).
   * If the state is already \c ETATQCQ , this function does nothing.
   * Otherwise, it calls the logical destructor of the \c Valeur \c va  and
   * deallocates the memory occupied by all the derivatives.
   */
  virtual void set_etat_qcq() ;	    
  
  /**
   * Sets the logical state to \c ETATUN  (one). 
   * Fills the \c Valeur \c va  with ones and
   * deallocates the memory occupied by all the derivatives. 
   */
  void set_etat_one() ;	    
  
  /**
   * Sets the logical state to \c ETATQCQ  (ordinary state)
   *  and performs the memory allocation of all the 
   *  elements, down to the \c double  arrays of the \c Tbl s. 
   *  This function performs in fact recursive calls to \c set_etat_qcq() 
   *  on each element of the chain \c Scalar ->
   *  \c Valeur  -> \c Mtbl  -> \c Tbl . 
   */
  virtual void allocate_all() ; 
  
  /**
   * Sets the \c Scalar to zero in a hard way. 
   * 1/ Sets the logical state to \c ETATQCQ , i.e. to an ordinary state.
   * 2/ Fills the \c Valeur \c va  with zeros. 
   * NB: this function must be used for debugging purposes only.
   * For other operations, the functions \c set_etat_zero() 
   * or \c annule(int,int) must be perferred. 
   */
  void annule_hard() ;
  
  // Extraction of information
  // -------------------------
    public:
  /** Returns the logical state \c ETATNONDEF  (undefined), 
   * \c ETATZERO (null) or \c ETATQCQ (ordinary).
   */
  int get_etat() const {return etat;} ; 
  
  /// Returns \c dzpuis 
  int get_dzpuis() const {return dzpuis;} ; 
  
  /** Returns \c true  if the last domain is compactified and
   *  \c *this  is not zero in this domain
   */
  bool dz_nonzero() const ; 
	
  /** Returns \c false  if the last domain is compactified 
   *  and \c *this  is not zero in this domain and \c dzpuis 
   *  is not equal to \c dzi , otherwise return true. 
   */
  bool check_dzpuis(int dzi) const ; 

  /** Looks for NaNs (not a number) in the scalar field.
   *  If at least one NaN is found, it returns \c true. If the flag \c verbose
   * is set to \c true, it outputs to the standard output the indices where NaNs
   * have been found.
   */
  bool is_nan(bool verbose=false) const ;

  // Assignment
  // -----------
 public: 
  /// Assignment to another \c Scalar defined on the same mapping
  void operator=(const Scalar& a) ;	
  
  /// Assignment to a \c Tensor  (of valence 0)
  virtual void operator=(const Tensor& a) ; 

  void operator=(const Cmp& a) ; 	///< Assignment to a \c Cmp 
  void operator=(const Valeur& a) ; ///< Assignment to a \c Valeur 
  void operator=(const Mtbl& a) ;	 ///< Assignment to a \c Mtbl 
  void operator=(double ) ;	 ///< Assignment to a \c double 
  void operator=(int ) ;		 ///< Assignment to an \c int 
  
  // Conversion oprators
  //---------------------
  operator Cmp() const ; ///< Conversion to a \c Cmp

  // Access to individual elements
  // -----------------------------
    public:
  
  /// Returns \c va  (read only version)
  const Valeur& get_spectral_va() const {return va;} ; 
  
  /// Returns \c va  (read/write version)
  Valeur& set_spectral_va() {return va;} ; 
  
  /** Read/write of the value in a given domain.
   *  This method should be used only to set the value in a given
   *  domain (it performs a call to \c del_deriv); for reading the
   *  value in a domain without changing it, the method \c domain(int )
   *  is preferable.
   *
   * @param l [input] domain index
   * @return writable \c Tbl containing the value of the field in domain \c l .
   */ 
  Tbl& set_domain(int l) {
    assert(etat == ETATQCQ) ;
    del_deriv() ; 
    return va.set(l) ;
  };
  
  /** Read-only of the value in a given domain.
   * @param l [input] domain index
   * @return \c Tbl containing the value of the field in domain \c l .
   */ 
  const Tbl& domain(int l) const {
    assert( (etat == ETATQCQ) || (etat == ETATUN) ) ;
    return va(l) ;
  };
  
  
  /** Returns the value of the field at a specified grid point.
   * @param l [input] domain index
   * @param k [input] \f$\phi\f$ index
   * @param j [input] \f$\theta\f$ index
   * @param i [input] \e r  (\f$\xi\f$) index
   */ 
  double val_grid_point(int l, int k, int j, int i) const {
    assert(etat != ETATNONDEF) ;
    if (etat == ETATZERO) {
      double zero = 0. ;
      return zero ; 
    }
    else {
      if (etat == ETATUN) {
      double one = 1. ;
      return one ;
      }
      else{ 	    
	return va(l, k, j, i) ;
      }
    }
  };
  
  /** Computes the value of the field at an
   *   arbitrary point \f$(r, \theta, \phi)\f$, by means of the spectral 
   *   expansion.
   *   NB: if \f$(r, \theta, \phi)\f$ is a point of the spectral grid, 
   *     the method \c val_grid_point  is to be preferred, 
   *     being much more efficient. 
   *	 @param r [input] value of the coordinate \e r 
   *	 @param theta [input] value of the coordinate \f$\theta\f$
   *	 @param phi [input] value of the coordinate \f$\phi\f$
   *	 @return value at the point \f$(r, \theta, \phi)\f$ 
   *		 of the field represented by \c *this . NB: in the compactified 
   *       external domain, the returned value is the actual value of the field, 
   *       i.e. the stored value divided by \f$ r^{\rm dzpuis} \f$. 
   */
  double val_point(double r, double theta, double phi) const ; 
  
  
  /** Setting the value of the field at a given grid point.
   * CAUTION: to gain in efficiency (especially when this method is
   *  invoqued inside a loop), the method \c del_deriv()  (to delete
   *     the derived members) is not called by \c set_grid_point . 
   *     It must thus be invoqued by the user, after all the calls
   *     to  \c set_grid_point  have been performed.   
   *     
   * @param l [input] domain index
   * @param k [input] \f$\phi\f$ index
   * @param j [input] \f$\theta\f$ index
   * @param i [input] \e r  (\f$\xi\f$) index
   * @return writable value of the field at the specified grid point
   */ 
  double& set_grid_point(int l, int k, int j, int i) {
    assert(etat == ETATQCQ) ;
    return va.set(l, k, j, i) ;
  };
  
	
  /**
   * Sets the \c Scalar to zero in several domains.
   *	@param l_min [input] The \c Scalar will be set (logically) to zero
   *			     in the domains whose indices are in the range
   *			     \c [l_min,l_max] .
   *	@param l_max [input] see the comments for \c l_min .
   * 
   * Note that \c annule(0,va.mg->get_nzone()-1) is equivalent to
   *	 \c set_etat_zero() .
   */
  virtual void annule(int l_min, int l_max) ; 
  
  /** Sets the value of the \c Scalar at the inner boundary of a given 
   * domain. 
   * @param l [input] domain index
   * @param x [input] (constant) value at the inner boundary of domain no. \c l 
   */
  void set_inner_boundary(int l, double x) ;
    
  /** Sets the value of the \c Scalar at the outer boundary of a given 
   * domain. 
   * @param l [input] domain index
   * @param x [input] (constant) value at the outer boundary of domain no. \c l 
   */
  void set_outer_boundary(int l, double x) ;

  /**
   * Gives the spectrum in terms of multipolar modes \e l .
   *  @return a \c Tbl  of size (nzone, lmax), where lmax is the
   *  maximal multipolar momentum over all domains. The \e l -th
   *  element contains the L1 norm of the \e l -th multipole 
   *  (\e i.e. a sum over all \e m of the norms (coefficient space)
   *  of the component of a given \f$Y_l^m\f$.
   */
  Tbl multipole_spectrum () const ;

  /** Returns the \c Tbl containing the values of angular coefficients
   *  at the outer boundary.
   *  @param l_dom [input] domain index
   *  @param leave_ylm [input] flag to decide whether the coefficients 
   *             are expressed in spherical harmonics or Fourier base
   */
  Tbl tbl_out_bound(int l_dom, bool leave_ylm = false) ;
  
  /** Returns the \c Tbl containing the values of angular coefficients
   *  at the inner boundary.
   *  @param l_dom [input] domain index
   *  @param leave_ylm [input] flag to decide whether the coefficients 
   *             are expressed in spherical harmonics or Fourier base
   */
  Tbl tbl_in_bound(int n, bool leave_ylm = false) ;
  
  /** Returns the \c Scalar containing the values of angular coefficients
   *  at the outer boundary.
   *  @param l_dom [input] domain index
   *  @param leave_ylm [input] flag to decide whether the coefficients 
   *             are expressed in spherical harmonics or Fourier base
   */
  Scalar scalar_out_bound(int n, bool leave_ylm = false) ;
  
  // Differential operators and others
  // ---------------------------------
 public:
  /** Returns \f$\partial / \partial r\f$ of \c *this .
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& dsdr() const ; 
 
  /** Returns \f$1/r \partial / \partial \theta\f$ of \c *this .
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& srdsdt() const ; 
  
  /** Returns \f$1/(r\sin\theta) \partial / \partial \phi\f$ of \c *this .
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& srstdsdp() const ; 
  
  /** Returns \f$\partial / \partial \theta\f$ of \c *this .
   */
  const Scalar& dsdt() const ; 
  
  /** Returns \f$\partial / \partial r\f$ of \c *this if the mapping is
   * affine (class \c Map_af) and \f$\partial / \partial \ln r\f$ 
   *  of \c *this if the mapping
   * is logarithmic (class \c Map_log).
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& dsdradial() const ; 
  
  /** Returns \f$\partial / \partial \rho \f$ of \c *this .
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& dsdrho() const ;
 
  /** Returns \f$1/\sin\theta \partial / \partial \phi\f$ of \c *this .
   */
  const Scalar& stdsdp() const ; 
  
  /** Returns \f$\partial/\partial x\f$ of \c *this ,
   *  where \f$x=r\sin\theta \cos\phi\f$.
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& dsdx() const ;	
  
  /** Returns \f$\partial/\partial y\f$ of \c *this ,
   *  where \f$y=r\sin\theta \sin\phi\f$.
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& dsdy() const ;	
  
  /** Returns \f$\partial/\partial z\f$ of \c *this ,
   *  where \f$z=r\cos\theta\f$.
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   */
  const Scalar& dsdz() const ;	
  
  /** Returns \f$\partial/\partial x_i\f$ of \c *this ,
   *  where \f$x_i = (x, y, z)\f$.
   *  If \c dzpuis  is zero, then the returned \c Scalar has 
   *  \c dzpuis  = 2. It is increased by 1 otherwise.
   *  @param i [input] i=1 for \e x ,  i=2 for \e y , i=3 for \e z .
   */
  const Scalar& deriv(int i) const ;	
  
    /** Returns the gradient (1-form = covariant vector) of \c *this  
     *  @param gam metric components only used to get the triad with 
     *    respect to which the components of the result are defined        
     */
    const Vector& derive_cov(const Metric& gam) const ; 


    /** Returns the "contravariant" derivative of \c *this  with respect 
     * to some metric \f$\gamma\f$, by raising the index of the
     * gradient (cf. method \c derive_cov() ) with 
     * \f$\gamma\f$.
     */
    const Vector& derive_con(const Metric& gam) const ; 

    /// Computes the derivative of \c this  along a vector field \c v 
    Scalar derive_lie(const Vector& v) const ; 


  /** Returns the Laplacian of \c *this 
   *   @param ced_mult_r [input] Determines the quantity computed in
   *			 the  compactified external domain (CED) 
   *		(\e u  in the field represented by \c *this ) :  
   *		    \li ced_mult_r = 0 : \f$\Delta u\f$	
   *		    \li ced_mult_r = 2 : \f$r^2 \,  \Delta u\f$	
   *		    \li ced_mult_r = 4 (default) : \f$r^4 \, \Delta u\f$	
   */
  const Scalar& laplacian(int ced_mult_r = 4) const ; 
  
  /** Returns the angular Laplacian \f$\Delta_{\theta\varphi}\f$ of \c *this ,
   *  where \f$\Delta_{\theta\varphi} f = \frac{\partial^2 f}
   *  {\partial \theta^2} + \frac{1}{\tan \theta} \frac{\partial f}
   *  {\partial \theta} +\frac{1}{\sin^2 \theta}\frac{\partial^2 f}
   *  {\partial \varphi^2}\f$
   * 
   */
  const Scalar& lapang() const ; 
  
  /// Division by \e r  everywhere; \c dzpuis  is not changed.
  void div_r() ;    
 
  /** Division by \e r  everywhere but with the output flag \c dzpuis  
   *  set to \c ced_mult_r .
   *  @param  ced_mult_r [input] value of \c dzpuis  of the result.
   */
  void div_r_dzpuis(int ced_mult_r) ; 
  
  /** Division by \e r  in the compactified external domain (CED), the 
   * \c dzpuis  flag is not changed.
   */
  void div_r_ced() ;

  /// Multiplication by \e r  everywhere; \c dzpuis  is not changed.
  void mult_r() ;  
  
  /** Multiplication by \e r  everywhere but with the output flag \c dzpuis  
   *  set to \c ced_mult_r .
   *  @param  ced_mult_r [input] value of \c dzpuis  of the result. 
   */
  void mult_r_dzpuis(int ced_mult_r) ; 
  
  /** Multiplication by \e r  in the compactified external domain (CED), the 
   * \c dzpuis  flag is not changed.
   */
  void mult_r_ced() ;
  
  /// Multiplication by \f$r\sin\theta\f$ everywhere; \c dzpuis  is not changed.
  void mult_rsint() ;   
  
  /** Multiplication by \f$r\sin\theta\f$ but with the output flag \c dzpuis 
   *  set to \c ced_mult_r .
   *  @param  ced_mult_r [input] value of \c dzpuis  of the result. 
   */
  void mult_rsint_dzpuis(int ced_mult_r) ; 

  /// Division by \f$r\sin\theta\f$ everywhere; \c dzpuis  is not changed.
  void div_rsint() ;    
  
  /** Division by \f$r\sin\theta\f$ but with the output flag \c dzpuis 
   *  set to \c ced_mult_r .
   *  @param  ced_mult_r [input] value of \c dzpuis  of the result. 
   */
  void div_rsint_dzpuis(int ced_mult_r) ; 
  
  void mult_cost() ;   ///< Multiplication by \f$\cos\theta\f$

  void div_cost() ;    ///< Division by \f$\cos\theta\f$

  void mult_sint() ;   ///< Multiplication by \f$\sin\theta\f$

  void div_sint() ;    ///< Division by \f$\sin\theta\f$

  void div_tant() ;    ///< Division by \f$\tan\theta\f$
  
  /** Computes the radial primitive which vanishes for \f$r\to \infty\f$.
   *  i.e. the function 
   *      \f$ F(r,\theta,\varphi) = \int_r^\infty f(r',\theta,\varphi) \, dr' \f$
   *  where \e f is the function represented by \c *this 
   * (and must have a \c dzpuis = 2). 
   * @param null_infty if true (default), the primitive is null
   *      at infinity (or on the grid boundary). \e F is null at the
   *      center otherwise
   * @return function \e F
   */ 
  Scalar primr(bool null_infty = true) const  ;  	    

  /** Computes the integral over all space of \c *this .
   *  The computed quantity is (\e u  being the field represented by
   *   \c *this )
   *    \f$\int u \, r^2 \sin\theta \,  dr\, d\theta \, d\phi\f$.
   *  Note that in the compactified external domain (CED), \c dzpuis  
   *  must be 4 for the computation to take place. 
   */
  double integrale() const ; 
	
  /** Computes the integral in each domain of \c *this .
   *  The computed quantity is (\e u  being the field represented by
   *   \c *this )
   *    \f$\int u \, r^2 \sin\theta \,  dr\, d\theta \, d\phi\f$
   *  in each domain. The result is returned a \c Tbl  on the 
   *  various domains. 
   *  Note that in the compactified external domain (CED), \c dzpuis  
   *  must be 4 for the computation to take place. 
   */
  const Tbl& integrale_domains() const ; 
	
  /** Decreases by \c dec  units the value of \c dzpuis  and 
   *  changes accordingly the values of the \c Scalar in the 
   *  compactified external domain (CED).
   */
  virtual void dec_dzpuis(int dec = 1) ; 

  /** Increases by \c inc  units the value of \c dzpuis  and 
   *  changes accordingly the values of the \c Scalar in the 
   *  compactified external domain (CED).
   */
  virtual void inc_dzpuis(int inc = 1) ; 
	
  /** Sets a new vectorial basis (triad) of decomposition and modifies
   *  the components accordingly. 
   */
  virtual void change_triad(const Base_vect& new_triad) ; 
    
  /**
   * Sets the \c n  lasts coefficients in \e r  to 0 in the 
   *  external domain.
   */
  void filtre (int n) ;
    
  /**
   * Sets the \c n  lasts coefficients in \e r  to 0 in all
   *  domains.
   */
  void filtre_r (int* nn) ;

  /**
   * Sets the \c n  last coefficients in \e r  to 0 in the domain \c nzone .
   */
  void filtre_r (int n, int nzone) ;

  /**
   * Applies an exponential filter to the spectral coefficients in the radial direction.
   * The filter is of the type: \f$ \forall n\leq N,\, b_n = \sigma(n/N ) a_n\f$, with 
   * \f$ \sigma(x) = \exp\left( -\ln (10^\alpha ) x^{2p} \right) \f$ and \e N the number 
   * of radial coefficients.
   * @param lzmin, lzmax [input] the indices of the domain where the filter is applied 
   *                              (in [\c lzmin , \c lzmax ])
   * @param p [input] the order of the filter
   * @param alpha [input] \f$\alpha\f$ appearing in the above formula.
   */
//  virtual void exponential_filter_r(int lzmin, int lzmax, int p, 
//			    double alpha= -16.) ;
  virtual void exponential_filter_r(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

  /**
   * Applies an exponential filter to the spectral coefficients in the radial direction.
   * The filter is of the type: \f$ \forall n\leq N,\, b_n = \sigma(n/N ) a_n\f$, with 
   * \f$ \sigma(x) = \exp\left( \alpha x^{p} \right) \f$ and \e N the number 
   * of radial coefficients.
   * @param lzmin, lzmax [input] the indices of the domain where the filter is applied 
   *                              (in [\c lzmin , \c lzmax ])
   * @param p [input] the order of the filter
   * @param alpha [input] \f$\alpha\f$ appearing in the above formula.
   */
  void sarra_filter_r(int lzmin, int lzmax, double p, 
			    double alpha= -1E-16) ;

  /**
   * Applies an exponential filter in radial direction in all domains.
   * (see \c Scalar:exponential_filter_r ). Note that this may cause 
   * regularity problems at the origin if applied in a nucleus.
   */
  void exp_filter_r_all_domains(Scalar &ss, int p, double alpha=-16.) ;

  /**
   * Applies an exponential filter in radial direction in all domains
   * for the case where p is a double
   * (see \c Scalar:sarra_filter_r ). Note that this may cause 
   * regularity problems at the origin if applied in a nucleus.
   */
  void sarra_filter_r_all_domains(double p, double alpha=1E-16) ;

  /**
   * Applies an exponential filter to the spectral coefficients in the angular directions.
   * The filter is of the type: 
   * \f$ \forall \ell \leq \ell_{\rm max},\, \forall m,\, b_{\ell m} = \sigma(\ell/\ell_{\rm max} ) a_{\ell m}\f$, with 
   * \f$ \sigma(x) \f$ defined for \c Scalar::exponential_filter_r and 
   * \f$\ell_{\rm max}\f$ the number of spherical harmonics used.
   */
  virtual void exponential_filter_ylm(int lzmin, int lzmax, int p, 
			    double alpha= -16.) ;

  /**
   * Sets all the multipolar components between \c l_min and \c l_max
   * to zero. This is done for [ \c l_min , \c l_max ] and all relevant 
   * \c m in the spherical harmonics expansion basis. If \c ylm_output 
   * is set to \c true , then the spectral expansion basis of \c this is 
   * left to be that of spherical harmonics.
   */
  void annule_l (int l_min, int l_max, bool ylm_output= false ) ;

  /**
   * Sets the \c n  lasts coefficients in \f$\Phi\f$ to 0 in the 
   * domain \c zone .
   */
  void filtre_phi (int n, int zone) ;
 
  /**
   * Sets the \c n  lasts coefficients in \f$\theta\f$ to 0 in the 
   * domain \c nz1 to \c nz2 when expressed in spherical harmonics.
   */
  void filtre_tp(int nn, int nz1, int nz2) ;
  
   
  /**
   * Substracts all the components behaving like \f$r^{-n}\f$ in the external 
   * domain, with \e n  strictly lower than \c puis , so that \c *this  
   * decreases at least like \f$r^{\tt puis} \f$ at infinity.
   */
  void fixe_decroissance (int puis) ;

    /** Performs a \f$C^k\f$ matching of the last non-compactified shell with
     * a decaying function \f$\sum_{j=0}^k {\alpha_j \over r^{\ell+n+j}}\f$ where
     * \f$\ell\f$ is the spherical harmonic index and \e n  is some 
     * specifiable parameter. 
     */
    void smooth_decay(int k, int n) ; 

  /**
   * Performs the \f$C^n\f$ matching of the nucleus with respect to the 
   * first shell.
   */
  void raccord(int n) ;
	
  /**
   * Performs the \f$C^1\f$ matching of the external domain with respect to
   * the last shell using function like \f$\frac{1}{r^i}\f$ with 
   * \f${\tt puis}  \leq i \leq {\tt puis+nbre}\f$ for each spherical harmonics 
   * with \f$l \leq {\tt lmax}\f$.
   */
  void raccord_c1_zec(int puis, int nbre, int lmax) ;

  /**
   * Matching of the external domain with the outermost shell
   */
  void raccord_externe(int puis, int nbre, int lmax) ;

  /**
   * Method for matching accross domains and imposing boundary condition.
   * Matching of the field represented by \c this accross domains and imposition of the
   * boundary condition using the tau method.
   * @param par_bc [input] \c Param to control the boundary conditions
   *	par_bc must contain (at a minimum)
   *	a modifiable Tbl which specifies a physical boundary
   *    two integers, one specifying the domain that has the boundary
   *		      the other specifying the number of conditions 
   *			1 -> Dirichlet
   *			2 -> Robin (which may reduce to von Neumann, see below)
   *	two doubles, specifying the Robin BC parameters. If the first is zero, we see that 
   *    Robin will reduce to von Neumann
   * @param par_mat [input/output] optional \c Param in which the matching matrices are
   *                stored (together with their LU decomposition).
   */
  void match_tau(Param& par_bc, Param* par_mat=0x0) ;

  /**
   * Method for matching accross domains and imposing boundary condition.
   * Matching of the field represented by \c this accross domains and imposition of the
   * boundary condition using the tau method.
   * @param par_bc [input] \c Param to control the boundary conditions
   * @param par_mat [input/output] optional \c Param in which the matching matrices are
   *                stored (together with their LU decomposition).
   */
  void match_tau_shell(Param& par_bc, Param* par_mat=0x0) ;

  /**
   * Method for matching accross domains and imposing boundary condition.
   * Matching of the field represented by \c this accross domains and imposition of the
   * boundary condition using the collocation method.
   * @param par_bc [input] \c Param to control the boundary conditions
   * @param par_mat [input/output] optional \c Param in which the matching matrices are
   *                stored (together with their LU decomposition).
   */
  void match_collocation(Param& par_bc, Param* par_mat=0x0) ;

  // Outputs
  // -------
 public:
  virtual void sauve(FILE *) const ;	    ///< Save in a file
    
	/** Displays the spectral coefficients and the associated
	 *  basis functions. This function shows only the values greater than a 
	 *  given threshold.
         *   @param comment comment to be printed at top of the display
         *      (default: 0x0 = nothing printed)
	 *   @param threshold [input] Value above which a coefficient is printed
	 *    (default: 1.e-7)
	 *   @param precision [input] Number of printed digits (default: 4)
	 *   @param ostr [input] Output stream used for the printing (default: cout)
	 */
	virtual void spectral_display(const char* comment = 0x0, 
                            double threshold = 1.e-7, int precision = 4, 
			    ostream& ostr = cout) const ;

  /// Display
  friend ostream& operator<<(ostream& , const Scalar & ) ;	
  
  /** 3D visualization via a plane section.
   * Prepares files for visualization by OpenDX of the values of the field in
   * a plane x=const, y=const or z=const
   *
   * @param section_type [input] defines the type of section : 
   *    \li 'x' for a plane x = a with a = const (parameter \c aa ) 
   *    \li 'y' for a plane y = a with a = const (parameter \c aa )
   *    \li 'z' for a plane z = a with a = const (parameter \c aa )
   * @param aa [input] constant a defining the section plane
   * @param umin [input] defines with \c umax  the range of the plane coordinate u 
   * @param umax [input] defines with \c umin  the range of the plane coordinate u 
   * @param vmin [input] defines with \c vmax  the range of the plane coordinate v 
   * @param vmax [input] defines with \c vmin  the range of the plane coordinate v 
   * @param title [input] title for the graph (for OpenDX legend)
   * @param filename [input] name for the file which will be the input for 
   *    OpenDX; the default 0x0 is transformed into "scalar_section"
   * @param start_dx [input] determines whether OpenDX must be launched (as a
   *     subprocess) to view the field; if set to \c false , only input files
   *     for future usage of OpenDX are created 
   * @param nu [input] number of points in the u direction (uniform sampling)   
   * @param nv [input] number of points in the v direction (uniform sampling)   
   *
   */
    void visu_section(const char section_type, double aa, double umin, double umax, double vmin,
        double vmax, const char* title = 0x0, const char* filename = 0x0,
        bool start_dx = true, int nu = 200, int nv = 200) const ;   

  /** 3D visualization via a plane section.
   * Prepares files for visualization by OpenDX of the values of the field in
   * any given plane.
   *
   * @param plane [input] : 2D \c Tbl  defining the section plane: \c plane 
   *    must of dimension 3x3 with the following content: 
   *    \li \c plane(0,i) : absolute Cartesian coordinates (xa0,ya0,za0) of some
   *    point in the plane considered as the origin for the plane coordinates
   *    (u,v): \c plane(0,0) = xa0 , \c plane(0,1) = ya0 , 
   *    \li \c plane(0,2) = za0   
   *    \li \c plane(1,i) : components w.r.t. absolute Cartesian coordinates 
   *        of the u-coordinate unit vector in the section plane 
   *    \li \c plane(2,i) : components w.r.t. absolute Cartesian coordinates 
   *        of the v-coordinate unit vector in the section plane
   * @param umin [input] defines with \c umax  the range of the plane coordinate u 
   * @param umax [input] defines with \c umin  the range of the plane coordinate u 
   * @param vmin [input] defines with \c vmax  the range of the plane coordinate v 
   * @param vmax [input] defines with \c vmin  the range of the plane coordinate v 
   * @param title [input] title for the graph (for OpenDX legend)
   * @param filename [input] name for the file which will be the input for 
   *    OpenDX; the default 0x0 is transformed into "scalar_section"
   * @param start_dx [input] determines whether OpenDX must be launched (as a
   *     subprocess) to view the field; if set to \c false , only input files
   *     for future usage of OpenDX are created 
   * @param nu [input] number of points in the u direction (uniform sampling)   
   * @param nv [input] number of points in the v direction (uniform sampling)   
   *
   */
    void visu_section(const Tbl& plane, double umin, double umax, double vmin,
        double vmax, const char* title = 0x0, const char* filename = 0x0,
        bool start_dx = true, int nu = 200, int nv = 200) const ;   

  /** 3D visualization via time evolving plane section (animation).
   * Prepares files for visualization by OpenDX of the values of the field in
   * a plane x=const, y=const or z=const at successive time steps
   *
   * @param section_type [input] defines the type of section : 
   *    \li 'x' for a plane x = a with a = const (parameter \c aa ) 
   *    \li 'y' for a plane y = a with a = const (parameter \c aa )
   *    \li 'z' for a plane z = a with a = const (parameter \c aa )
   * @param aa [input] constant a defining the section plane
   * @param umin [input] defines with \c umax  the range of the plane coordinate u 
   * @param umax [input] defines with \c umin  the range of the plane coordinate u 
   * @param vmin [input] defines with \c vmax  the range of the plane coordinate v 
   * @param vmax [input] defines with \c vmin  the range of the plane coordinate v 
   * @param jtime [input] time step label
   * @param ttime [input] time t corresponding to \c jtime 
   * @param jgraph [input] number of time steps between two graphs: the graph
   *    will be generated only if \c jtime  is a multiple of \c jgraph 
   * @param title [input] title for the graph (for OpenDX legend)
   * @param filename_root [input] beginning of the names for the files which will 
   *    be the input for OpenDX (the end of names will be automatically generated
   *    from the time steps); the default 0x0 is transformed into "anim"
   * @param start_dx [input] determines whether OpenDX must be launched (as a
   *     subprocess) to view the field; if set to \c false , only input files
   *     for future usage of OpenDX are created 
   * @param nu [input] number of points in the u direction (uniform sampling)   
   * @param nv [input] number of points in the v direction (uniform sampling)   
   *
   */
   void visu_section_anim(const char section_type, double aa, double umin, 
        double umax, double vmin, double vmax, int jtime, double ttime, 
        int jgraph = 1, const char* title = 0x0, const char* filename_root = 0x0, 
        bool start_dx = false, int nu = 200, int nv = 200) const ;   

  /** 3D visualization (volume rendering) via OpenDX.
   * Prepares files for visualization by OpenDX of the values of the field in
   * some rectangular box.
   *
   * @param xmin [input] defines with \c xmax  the x range of the visualization box 
   * @param xmax [input] defines with \c xmin  the x range of the visualization box 
   * @param ymin [input] defines with \c ymax  the y range of the visualization box 
   * @param ymax [input] defines with \c ymin  the y range of the visualization box 
   * @param zmin [input] defines with \c zmax  the z range of the visualization box 
   * @param zmax [input] defines with \c zmin  the z range of the visualization box 
   * @param title [input] title for the graph (for OpenDX legend)
   * @param filename [input] name for the file which will be the input for 
   *    OpenDX; the default 0x0 is transformed into "scalar_box"
   * @param start_dx [input] determines whether OpenDX must be launched (as a
   *     subprocess) to view the field; if set to \c false , only input files
   *     for future usage of OpenDX are created 
   * @param nx [input] number of points in the x direction (uniform sampling)   
   * @param ny [input] number of points in the y direction (uniform sampling)   
   * @param nz [input] number of points in the z direction (uniform sampling)   
   *
   */
    void visu_box(double xmin, double xmax, double ymin, double ymax,
        double zmin, double zmax, const char* title0 = 0x0, 
        const char* filename0 = 0x0, bool start_dx = true, int nx = 40, int ny = 40, 
        int nz = 40) const ;      
        


  // Member arithmetics
  // ------------------
 public:
  void operator+=(const Scalar &) ;		    ///< += Scalar
  void operator-=(const Scalar &) ;		    ///< -= Scalar
  void operator*=(const Scalar &) ;		    ///< *= Scalar

  // Manipulation of spectral bases
  // ------------------------------    
  /** Sets the spectral bases of the \c Valeur \c va  to the standard ones 
   *  for a scalar field
   */
  virtual void std_spectral_base() ;	 
  
 /** Sets the spectral bases of the \c Valeur \c va  to the standard odd ones 
   *  for a scalar field
   */
  virtual void std_spectral_base_odd() ;	 
  
  /** Sets the spectral bases of the \c Valeur \c va  
   */
  void set_spectral_base(const Base_val& ) ;	 

  /// Returns the spectral bases of the \c Valeur \c va  
  const Base_val& get_spectral_base( ) const {return va.base ;} ;	 

  /** Modifies the \c dzpuis  flag.
   *  NB: this method does not change the field values stored in
   *  the compactified external domain (use methods \c dec_dzpuis() ,
   *  etc... for this purpose).  
   */
  void set_dzpuis(int ) ; 

  /** Asymptotic expansion at r = infinity. 
   * 
   *  Determines the coefficients \f$a_k(\theta, \phi)\f$ of the expansion
   *  \f[
   *	\sum_{k=0}^n {a_k(\theta, \phi) \over r^k}
   *  \f]
   *  of \c *this  when \f$r \rightarrow \infty\f$. 
   *
   *	@param n order of the expansion
   *	@param flag : output
   *	@return Array of \c n +1 \c Valeur s on \c mg->angu  
   *		describing the coefficients \f$a_k(\theta, \phi)\f$. 
   *		This array is allocated by the routine. 
   * 
   */
  Valeur** asymptot(int n, const int flag = 0) const ; 
	

  // PDE resolution 
  // --------------
 public:
  /** Solves the scalar Poisson equation with \c *this  as a source.
   *   The source \f$\sigma\f$ of the equation \f$\Delta u = \sigma\f$ is 
   *   represented by the \c Scalar \c *this . 
   *   Note that \c dzpuis  must be equal to 2 or 4, i.e. that the
   *   quantity stored in \c *this  is in fact \f$r^2 \sigma\f$ or
   *   \f$r^4 \sigma\f$ in the compactified external domain. 
   *   The solution \e u  with the boundary condition \e u =0 at spatial
   *   infinity is the returned \c Scalar. 
   */
  Scalar poisson() const ;

  /** Solves the scalar Poisson equation with \c *this  as a source
   *   (version with parameters to control the resolution).
   *   The source \f$\sigma\f$ of the equation \f$\Delta u = \sigma\f$ is 
   *   represented by the \c Scalar \c *this . 
   *   Note that \c dzpuis  must be equal to 2 or 4, i.e. that the
   *   quantity stored in \c *this  is in fact \f$r^2 \sigma\f$ or
   *   \f$r^4 \sigma\f$ in the compactified external domain. 
   *   @param par [input/output] possible parameters
   *   @param uu [input/output] solution \e u  with the boundary condition 
   *   \e u =0 at spatial infinity. 
   */
  void poisson(Param& par, Scalar& uu) const ;
	  
  /** Solves the scalar Poisson equation with \c *this  as a source using a real Tau method
   *   The source \f$\sigma\f$ of the equation \f$\Delta u = \sigma\f$ is 
   *   represented by the \c Scalar \c *this . 
   *   Note that \c dzpuis  must be equal to 2, 3 or 4, i.e. that the
   *   quantity stored in \c *this  is in fact \f$r^2 \sigma\f$, \f$r^3 \sigma\f$ or
   *   \f$r^4 \sigma\f$ in the compactified external domain. 
   *   The solution \e u  with the boundary condition \e u =0 at spatial
   *   infinity is the returned \c Scalar. 
   */
  Scalar poisson_tau() const ;
   
   /** Solves the scalar Poisson equation with \c *this  as a source using a real Tau method
   * (version with parameters to control the resolution)
   *   The source \f$\sigma\f$ of the equation \f$\Delta u = \sigma\f$ is 
   *   represented by the \c Scalar \c *this . 
   *   Note that \c dzpuis  must be equal to 2, 3 or 4, i.e. that the
   *   quantity stored in \c *this  is in fact \f$r^2 \sigma\f$, \f$r^3 \sigma\f$ or
   *   \f$r^4 \sigma\f$ in the compactified external domain. 
   *   The solution \e u  with the boundary condition \e u =0 at spatial
   *   infinity is the returned \c Scalar. 
   */
  void poisson_tau(Param& par, Scalar& uu) const ;

  /**
   * Is identicall to \c Scalar::poisson() . The regularity condition at the 
   * origin is replace by a boundary condition of the Dirichlet type.
   * 
   * @param limite [input] : angular function. The boundary condition is 
   * given by \c limite[num] .
   * @param num [input] : index of the boudary at which the condition is to 
   * be fullfilled.
   * 
   * More precisely we impose the solution is equal to \c limite[num]  at the
   * boundary between the domains \c num  and \c num+1  (the latter one being 
   * a shell).
   * 
   */
  Scalar poisson_dirichlet (const Valeur& limite, int num) const ;
	
  /**
   * Idem as \c Scalar::poisson_dirichlet , the boundary condition being on 
   * the radial derivative of the solution.
   */
  Scalar poisson_neumann   (const Valeur&, int) const ;


  /**
   * Is identicall to \c Scalar::poisson() . The regularity condition at the 
   * origin is replace by a mixed boundary condition (Dirichlet + Neumann).
   * 
   * @param limite [input] : angular function. The boundary condition is 
   * given by \c limite[num] .
   * @param num [input] : index of the boudary at which the condition is to 
   * be fullfilled.
   * @param fact_dir [input] : double in front of \f$\Psi\f$ (if \f$\Psi\f$
   * is the variable solved).
   * @param fact_neu [input] : double in front of the radial derivative
   * of \f$\Psi\f$.
   *
   * More precisely we impose \f$ fact\_dir.\Psi + fact\_neu.\frac{\partial 
   * \Phi}{\partial r}\f$ is equal to the source at the
   * boundary between the domains \c num  and \c num+1  (the latter one being 
   * a shell).
   */
  Scalar poisson_dir_neu  (const Valeur& limite , int num, 
			   double fact_dir, double fact_neu) const ;

  /**
   * Idem as \c Scalar::poisson_dirichlet , the boundary condition being on 
   * both the function and its radial derivative. The boundary condition 
   * at infinity is relaxed.
   */

  Scalar poisson_frontiere_double   (const Valeur&, const Valeur&, int) const ;

  /** Solves the scalar Poisson equation with \c *this  as a source
   *   (version with parameters to control the resolution).
   *   The source \f$\sigma\f$ of the equation \f$\Delta u = \sigma\f$ is 
   *   represented by the \c Scalar \c *this . 
   *   The regularized source
   *   \f$\sigma_{\rm regu} = \sigma - \sigma_{\rm div}\f$
   *   is constructed and solved.
   *   Note that \c dzpuis  must be equal to 2 or 4, i.e. that the
   *   quantity stored in \c *this  is in fact \f$r^2 \sigma\f$ or
   *   \f$r^4 \sigma\f$ in the compactified external domain.
   *   @param k_div [input] regularization degree of the procedure
   *   @param nzet [input] number of domains covering the star
   *   @param unsgam1 [input] parameter \f$1/(\gamma-1)\f$ where \f$\gamma\f$
   *          denotes the adiabatic index
   *   @param par [input/output] possible parameters
   @param uu [input/output] solution
   *   @param uu_regu [output] solution of the regular part of
   *          the source.
   *   @param uu_div [output] solution of the diverging part of
   *          the source.
   *   @param duu_div [output] derivative of the diverging potential.
   *   @param source_regu [output] regularized source
   *   @param source_div [output] diverging part of the source
   */
  void poisson_regular(int k_div, int nzet, double unsgam1, Param& par,
		       Scalar& uu, Scalar& uu_regu, Scalar& uu_div,
		       Tensor& duu_div,
		       Scalar& source_regu, Scalar& source_div) const ;

  /** Checks if a Poisson equation with \c *this  as a source
   *  has been correctly solved.
   * 
   *  @param uu [input] Solution \e u  of the Poisson equation
   *		      \f$\Delta u = \sigma\f$,  \f$\sigma\f$ being 
   *		      represented by the \c Scalar \c *this .
   * 
   *  @param ostr [input/output] Output stream used for displaying
   *		\c err .
   *
   *  @param detail [input] \li if \c true  displays \c err(0,*) , 
   *		    \c err(1,*) and \c err(2,*) 
   *		\li if \c false (default),  displays only 
   *		the relative error \c err(0,*) . 
   *  
   *  @return 2-D \c Tbl  \c err  decribing the errors in each 
   *	    domain: 
   *	\li \c err(0,l) : Relative error in domain no. \c l , 
   *	    defined as the maximum value of 
   *	    \f$|\Delta u - \sigma|\f$ in that domain divided by \e M , 
   *	    where \e M  is the maximum value of \f$|\sigma|\f$ 
   *	    over all domains if \c dzpuis = 0  or \f$\sigma\f$ is
   *	    zero in the compactified external domain (CED). If 
   *	    \c dzpuis != 0  and \f$\sigma\f$ does not vanish in the 
   *	    CED, the value of \e M  used in the
   *	    non-compactified domains is the maximum value over
   *	    these domains, whereas the value of \e M  used in the
   *	    compactified external domain is the maximum value
   *	    on that particular domain. 
   *	\li \c err(1,l) :    Maximum value of the absolute error
   *			\f$|\Delta u - \sigma|\f$ in domain no. \c l  
   *	\li \c err(2,l) :    Maximum value of \f$|\sigma|\f$ in domain 
   *			    no. \c l  
   */
  Tbl test_poisson(const Scalar& uu, ostream& ostr, 
		   bool detail = false) const ;  

	/** Solves the (generalized) angular Poisson equation with \c *this  
         * as source. 
	 * The generalized angular Poisson equation is 
         * \f$\Delta_{\theta\varphi} u + \lambda u = \sigma\f$,
	 * where \f$\Delta_{\theta\varphi} u := \frac{\partial^2 u}
	 *  {\partial \theta^2} + \frac{1}{\tan \theta} \frac{\partial u}
	 *  {\partial \theta} +\frac{1}{\sin^2 \theta}\frac{\partial^2 u}
	 *  {\partial \varphi^2}\f$.
	 * 
         *    @param lambda [input] coefficient \f$\lambda\f$ in the above equation
         *      (default value = 0)
	 *   @return solution \e u . 
	 */
	Scalar poisson_angu(double lambda =0) const ;

  /** Performs one time-step integration (from \f$t=J \to J+1\f$) of the 
   *   scalar d'Alembert equation with \c *this  being the value of 
   *   the function \e f  at time \e J .
   *
   *   Works only with an affine mapping (class \c Map_af ) and,
   *   if the last domain is a compactified one, it simply copies
   *   the value of the field in this last domain at the time-step \e J 
   *   to the last domain of the returned solution.
   *   @param par [input/output] possible parameters to control the
   *   resolution of the d'Alembert equation: 
   *   \li \c par.get_double(0)  : [input] the time step \e dt ,
   *   \li \c par.get_int(0)  : [input] the type of boundary conditions
   *   set at the outer boundary (0 : reflexion, 1 : Sommerfeld 
   *   outgoing wave, valid only for \e l=0  components, 2 : Bayliss 
   *   \& Turkel outgoing wave, valid for \e l=0, 1, 2  components)
   *   \li \c par.get_int_mod(0)  : [input/output] set to 0 at first
   *   call, is used as a working flag after (must not be modified after
   *   first call)
   *   \li \c par.get_tensor_mod(0)  : [input] (optional) if the wave 
   *   equation is on a curved space-time, this is the potential in front
   *   of the Laplace operator. It has to be a Scalar and updated at 
   *    every time-step (for a potential depending on time).
   *   Note: there are many other working objects attached to this
   *   \c Param , so one should not modify it.
   *   There should be exactly one \c Param  for each wave equation to be 
   *   solved. 
   *   @param fJm1 [input] solution \f$f^{J-1}\f$ at time \e J-1 
   *   @param source [input] source \f$\sigma\f$ of the d'Alembert equation 
   *	    \f$\diamond u = \sigma\f$.
   *   @return solution \f$f^{J+1}\f$ at time \e J+1
   *   with boundary conditions defined by \c par.get_int(0) .
   */
  Scalar avance_dalembert(Param& par, const Scalar& fJm1, const Scalar& source) 
    const ;

 /**
   * Resolution of a general elliptic equation, putting zero at infinity.
   * @param params [input] the operators and variables to be used.
   **/
  Scalar sol_elliptic(Param_elliptic& params) const ;
 
/**
   * Resolution of a general elliptic equation, putting zero at infinity
   * and with inner boundary conditions.
   * @param params [input] the operators and variables to be used.
   * @param bound [input] : the boundary condition
   * @param fact_dir : 1 Dirchlet condition, 0 Neumann condition
   * @param fact_neu : 0 Dirchlet condition, 1 Neumann condition

   **/
  Scalar sol_elliptic_boundary(Param_elliptic& params, const Mtbl_cf& bound,
			       double fact_dir, double fact_neu) const ;
 
  /** Resolution of general elliptic equation, with inner boundary conditions as Scalars
   * on mono-domain angulare grids
   **/

  Scalar sol_elliptic_boundary(Param_elliptic& params, const Scalar& bound,
			       double fact_dir, double fact_neu) const ;
 

  /** Solves the scalar 2-dimensional elliptic equation 
   *   with \c *this  as a source.
   *   Note that \c dzpuis  must be equal to 2, 3 or 4, i.e. 
   *   The solution \e u  with the boundary condition \e u =0 at spatial
   *   infinity is the returned \c Scalar. 
   */
  Scalar sol_elliptic_2d(Param_elliptic&) const ;
 
  /** Solves a pseudo-1d elliptic equation 
   *   with \c *this  as a source.
   *  
   */
  Scalar sol_elliptic_pseudo_1d(Param_elliptic&) const ;

   /**
   * Resolution of a general elliptic equation, putting a given value 
   * at the outermost 
   * shell and not solving in the compactified domain.
   * @param params [input] the operators and variables to be used.
   * @param val [input] value at the last shell.
   **/
  Scalar sol_elliptic_no_zec(Param_elliptic& params, double val = 0) const ;
  
  /**
   * Resolution of a general elliptic equation solving in the 
   * compactified domain and putting a given value at the inner boundary.
   * @param params [input] the operators and variables to be used.
   * @param val [input] value at the inner boundary of the external domain.
   **/
  Scalar sol_elliptic_only_zec(Param_elliptic& params, double val) const ;

  /**
   * General elliptic solver.
   * The equation is not solved in the compactified domain and the 
   * matching is done with an homogeneous solution.
   * @param params [input] the operators and variables to be used.
   * @param coef [output] : coefficient of the oscillatory solution 
   * in the external domain.
   * @param phases [output] : phases (i.e. choice of the homogeneous solution to match with).
   **/
  Scalar sol_elliptic_sin_zec(Param_elliptic& params, double* coefs, double* phases) const ;

   
  /**
   * Resolution of a general elliptic equation fixing the dericative at 
   * the origin and relaxing one continuity  condition.
   * 
   * @param val [input] value of the derivative.
   * @param params [input] the operators and variables to be used.
   **/
  Scalar sol_elliptic_fixe_der_zero(double val, 
				    Param_elliptic& params) const ;
  

  /**
   * Resolution of a divergence-like equation.
   * The equation solved reads: \f$ \frac{\partial \phi}{\partial r} + \frac{n}{r} 
   * \phi = \sigma\f$, with \f$\phi\f$ the unknown and \f$\sigma\f$ the source
   * represented by \c this.
   *
   * @param n [input] the coefficient in front of the 1/r term.
   *
   * @return the solution to the equation.
   */
  Scalar sol_divergence(int n) const ;
	
  // Import from other mapping 
  // -------------------------

  /** Assignment to another \c Scalar defined on a different mapping.
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import(const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping.
   *  Case where the \c Scalar is symmetric with respect to the plane y=0.
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_symy(const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping.
   *  Case where the \c Scalar is antisymmetric with respect to the 
   *  plane y=0.
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_asymy(const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping.
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping.
   *  Case where the \c Scalar is symmetric with respect to the plane y=0.
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_symy(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping.
   *  Case where the \c Scalar is antisymmetric with respect to the 
   *  plane y=0.
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_asymy(int nzet, const Scalar& ci) ;	 

 protected:
  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings do not have a particular relative orientation.
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_gal(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings have aligned Cartesian axis. 
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_align(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings have anti-aligned Cartesian axis (i.e.
   *  \f$x_1 = - x_2\f$,  \f$y_1 = - y_2\f$,  \f$z_1 = z_2\f$). 
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_anti(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings have aligned Cartesian axis. 
   *  Case where the \c Scalar is symmetric with respect to the plane y=0.
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_align_symy(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings have anti-aligned Cartesian axis (i.e.
   *  \f$x_1 = - x_2\f$,  \f$y_1 = - y_2\f$,  \f$z_1 = z_2\f$). 
   *  Case where the \c Scalar is symmetric with respect to the plane y=0.
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_anti_symy(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings have aligned Cartesian axis. 
   *  Case where the \c Scalar is antisymmetric with respect to the 
   *  plane y=0.
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_align_asymy(int nzet, const Scalar& ci) ;	 

  /** Assignment to another \c Scalar defined on a different mapping,
   *  when the two mappings have anti-aligned Cartesian axis (i.e.
   *  \f$x_1 = - x_2\f$,  \f$y_1 = - y_2\f$,  \f$z_1 = z_2\f$). 
   *  Case where the \c Scalar is antisymmetric with respect to the 
   *  plane y=0.
   *
   *  This assignment is performed point to point by means of the
   *  spectral expansion of the original \c Scalar. 
   *	@param nzet [input] Number of domains of the destination
   *			    mapping (i.e. \c this->mp ) where the 
   *			    importation is performed: the assignment
   *			    is done for the domains whose indices are
   *			    between 0 and \c nzet-1 . In the other
   *			    domains, \c *this  is set to zero. 
   *	@param ci [input] \c Scalar to be imported.
   */
  void import_anti_asymy(int nzet, const Scalar& ci) ;	 
	

  friend Scalar operator-(const Scalar& ) ;			
  friend Scalar operator+(const Scalar&, const Scalar &) ;	
  friend Scalar operator+(const Scalar&, const Mtbl&) ;	
  friend Scalar operator+(const Scalar&, double ) ;		
  friend Scalar operator-(const Scalar &, const Scalar &) ;
  friend Scalar operator-(const Scalar&, const Mtbl&) ;	
  friend Scalar operator-(const Scalar&, double ) ;		
  friend Scalar operator*(const Scalar &, const Scalar &) ;
  friend Scalar operator%(const Scalar &, const Scalar &) ;
  friend Scalar operator|(const Scalar &, const Scalar &) ;
  friend Scalar operator*(const Mtbl&, const Scalar &) ;		
  friend Scalar operator*(double, const Scalar &) ;		
  friend Scalar operator/(const Scalar &, const Scalar &) ;
  friend Scalar operator/(const Scalar &, const Mtbl &) ;
  friend Scalar operator/(const Mtbl &, const Scalar &) ;
  friend Scalar operator/(const Scalar&, double ) ;	       
  friend Scalar operator/(double, const Scalar &) ;

  friend Scalar sin(const Scalar& ) ;
  friend Scalar cos(const Scalar& ) ;
  friend Scalar tan(const Scalar& ) ;
  friend Scalar asin(const Scalar& ) ;
  friend Scalar acos(const Scalar& ) ;
  friend Scalar atan(const Scalar& ) ;
  friend Scalar exp(const Scalar& ) ;	
  friend Scalar Heaviside(const Scalar& ) ;	
  friend Scalar log(const Scalar& ) ;	
  friend Scalar log10(const Scalar& ) ;	
  friend Scalar sqrt(const Scalar& ) ;	
  friend Scalar racine_cubique (const Scalar& ) ;
  friend Scalar pow(const Scalar& , int ) ;	
  friend Scalar pow(const Scalar& , double ) ; 
  friend Scalar abs(const Scalar& ) ;	

  friend double totalmax(const Scalar& ) ;   
  friend double totalmin(const Scalar& ) ;   
  friend Tbl max(const Scalar& ) ;   
  friend Tbl min(const Scalar& ) ;   
  friend Tbl norme(const Scalar& ) ;   
  friend Tbl diffrel(const Scalar& a, const Scalar& b) ; 
  friend Tbl diffrelmax(const Scalar& a, const Scalar& b) ; 

};

ostream& operator<<(ostream& , const Scalar & ) ;	

// Prototypage de l'arithmetique
/**
 * \defgroup sal_mat Scalar mathematics
 * \ingroup (tensor)
 * @{
 */

Scalar operator+(const Scalar& ) ;			///< + Scalar
Scalar operator-(const Scalar& ) ;			///< \c - Scalar
Scalar operator+(const Scalar&, const Scalar &) ;	///< Scalar + Scalar
Scalar operator+(const Scalar&, const Mtbl&) ;	///< Scalar + Mbtl
Scalar operator+(const Mtbl&, const Scalar&) ;	///< Mtbl + Scalar
Scalar operator+(const Scalar&, double ) ;		///< Scalar + double
Scalar operator+(double, const Scalar& ) ;		///< double + Scalar 
Scalar operator+(const Scalar&, int ) ;		///< Scalar + int
Scalar operator+(int, const Scalar& ) ;		///< int + Scalar 
Scalar operator-(const Scalar &, const Scalar &) ;	///< Scalar - Scalar
Scalar operator-(const Scalar&, const Mtbl&) ;	///< Scalar - Mbtl
Scalar operator-(const Mtbl&, const Scalar&) ;	///< Mtbl - Scalar
Scalar operator-(const Scalar&, double ) ;		///< Scalar - double
Scalar operator-(double, const Scalar& ) ;		///< double - Scalar 
Scalar operator-(const Scalar&, int ) ;		///< Scalar - int
Scalar operator-(int, const Scalar& ) ;		///< int - Scalar 
Scalar operator*(const Scalar &, const Scalar &) ;	///< Scalar * Scalar

/// Scalar * Scalar with desaliasing
Scalar operator%(const Scalar &, const Scalar &) ;	

/// Scalar * Scalar with desaliasing only in \e r
Scalar operator|(const Scalar &, const Scalar &) ;

Scalar operator*(const Mtbl&, const Scalar&) ; ///< Mtbl * Scalar
Scalar operator*(const Scalar&, const Mtbl&) ; ///< Scalar * Mtbl
	
Scalar operator*(const Scalar&, double ) ;		///< Scalar * double
Scalar operator*(double, const Scalar &) ;		///< double * Scalar
Scalar operator*(const Scalar&, int ) ;		///< Scalar * int
Scalar operator*(int, const Scalar& ) ;		///< int * Scalar 
Scalar operator/(const Scalar &, const Scalar &) ;	///< Scalar / Scalar
Scalar operator/(const Scalar&, double ) ;		///< Scalar / double
Scalar operator/(double, const Scalar &) ;		///< double / Scalar
Scalar operator/(const Scalar&, int ) ;		///< Scalar / int
Scalar operator/(int, const Scalar &) ;		///< int / Scalar
Scalar operator/(const Scalar &, const Mtbl&) ; ///< Scalar / Mtbl  
Scalar operator/(const Mtbl&, const Scalar &) ; ///< Mtbl / Scalar
	

Scalar sin(const Scalar& ) ;		///< Sine
Scalar cos(const Scalar& ) ;		///< Cosine
Scalar tan(const Scalar& ) ;		///< Tangent
Scalar asin(const Scalar& ) ;		///< Arcsine
Scalar acos(const Scalar& ) ;		///< Arccosine
Scalar atan(const Scalar& ) ;		///< Arctangent
Scalar exp(const Scalar& ) ;		///< Exponential
Scalar Heaviside(const Scalar& ) ;		///< Heaviside function
Scalar log(const Scalar& ) ;		///< Neperian logarithm
Scalar log10(const Scalar& ) ;	///< Basis 10 logarithm
Scalar sqrt(const Scalar& ) ;		///< Square root
Scalar racine_cubique (const Scalar& ) ;		///< Cube root
Scalar pow(const Scalar& , int ) ;	///< Power \f${\tt Scalar}^{\tt int}\f$
Scalar pow(const Scalar& , double ) ; ///< Power \f${\tt Scalar}^{\tt double}\f$
Scalar abs(const Scalar& ) ;		///< Absolute value

/**
 * Maximum values of a \c Scalar in each domain.
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are the set of the maximum values in each domain.  
 */
double totalmax(const Scalar& ) ;   

/**
 * Minimum values of a \c Scalar in each domain.
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are the set of the minimum values in each domain.  
 */
double totalmin(const Scalar& ) ;   

/**
 * Maximum values of a \c Scalar in each domain.
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are the set of the maximum values in each domain.  
 */
Tbl max(const Scalar& ) ;   

/**
 * Minimum values of a \c Scalar in each domain.
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are the set of the minimum values in each domain.  
 */
Tbl min(const Scalar& ) ;   

/**
 * Sums of the absolute values of all the values of the \c Scalar 
 * in each domain.
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are the set of the sums of the absolute values in each domain.  
 */
Tbl norme(const Scalar& ) ;   

/**
 * Relative difference between two \c Scalar (norme version).
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are \c norme[a(l)-b(l)]/norme[b(l)]  if \c b(l)!=0  and
 *	   \c norme[a(l)-b(l)]  if  \c b(l)=0 ,  where \c a(l)  and 
 *	   \c b(l)  denote symbolically the values of \c a  and \c b  
 *	   in domain no. \c l . 
 */
Tbl diffrel(const Scalar& a, const Scalar& b) ; 

/**
 * Relative difference between two \c Scalar (max version).
 * @return 1-D \c Tbl  of size the number of domains, the elements of which 
 *	   are \c max[abs(a(l)-b(l))]/max[abs(b(l))]  if \c b(l)!=0  and
 *	   \c max[abs(a(l)-b(l))]  if  \c b(l)=0 ,  where \c a(l)  and 
 *	   \c b(l)  denote symbolically the values of \c a  and \c b  
 *	   in domain no. \c l . 
 */
Tbl diffrelmax(const Scalar& a, const Scalar& b) ; 

/**
 * Applies an exponential filter in angular directions in all domains.
 * (see \c Scalar:exponential_filter_ylm ).
 */
void exp_filter_ylm_all_domains(Scalar& ss, int p, double alpha=-16.) ;

/** @} */
}
#endif