1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/*
* Definition of methods for the class Spheroid and its subclass App_hor
*
*/
/*
* Copyright (c) 2009 Jose-Luis Jaramillo & Jerome Novak & Nicolas Vasset
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char excision_hor_C[] = "$Header: /cvsroot/Lorene/C++/Source/App_hor/excision_hor.C,v 1.4 2014/10/13 08:52:38 j_novak Exp $" ;
/*
* $Header: /cvsroot/Lorene/C++/Source/App_hor/excision_hor.C,v 1.4 2014/10/13 08:52:38 j_novak Exp $
*
*/
// C headers
#include <cmath>
#include <cassert>
// Lorene headers
#include "excision_hor.h"
//---------------//
// Constructors //
//--------------//
namespace Lorene {
Excision_hor::Excision_hor(const Scalar& h_in, const Metric& gij, const Sym_tensor& Kij2, const Scalar& ppsi, const Scalar& nn, const Vector& beta, const Sym_tensor& Tij2, double timestep, int int_nos):
sph(h_in, gij, Kij2),
conf_fact(ppsi),
lapse(nn),
shift(beta),
gamij (gij),
Kij(Kij2),
delta_t(timestep),
no_of_steps(int_nos),
Tij(Tij2)
{
set_der_0x0() ;
}
//Copy constructor//
Excision_hor::Excision_hor(const Excision_hor &exc_in) :sph(exc_in.sph),
conf_fact(exc_in.conf_fact),
lapse(exc_in.lapse),
shift(exc_in.shift),
gamij (exc_in.gamij),
Kij (exc_in.Kij),
delta_t(exc_in.delta_t),
no_of_steps(exc_in.no_of_steps),
Tij(exc_in.Tij)
{
set_der_0x0() ;
}
//------------//
//Destructor //
//-----------//
Excision_hor::~Excision_hor()
{
del_deriv() ;
}
// -----------------//
// Memory management//
//------------------//
void Excision_hor::del_deriv() const {
if (p_get_BC_conf_fact != 0x0) delete p_get_BC_conf_fact ;
if (p_get_BC_bmN != 0x0) delete p_get_BC_bmN ;
if (p_get_BC_bpN != 0x0) delete p_get_BC_bpN ;
if (p_get_BC_shift != 0x0) delete p_get_BC_shift ;
set_der_0x0() ;
}
void Excision_hor::set_der_0x0() const {
p_get_BC_conf_fact = 0x0 ;
p_get_BC_bmN = 0x0 ;
p_get_BC_bpN = 0x0 ;
p_get_BC_shift = 0x0 ;
}
//---------//
//Accessors//
//---------//
// Source for the Neumann BC on the conformal factor
const Scalar& Excision_hor::get_BC_conf_fact() const{
if (p_get_BC_conf_fact == 0x0){
Sym_tensor gamconfcov = gamij.cov()/pow(conf_fact, 4);
gamconfcov.std_spectral_base();
Metric gamconf(gamconfcov);
Vector tilde_s = gamconf.radial_vect();
Scalar bound_psi = -((1./conf_fact)*contract((contract(Kij,1,tilde_s,0)),0, tilde_s,0));
bound_psi += -conf_fact*tilde_s.divergence(gamconf);
bound_psi = 0.25*bound_psi;
bound_psi += -contract(conf_fact.derive_cov(gamconf),0,tilde_s,0) + conf_fact.dsdr();
bound_psi.std_spectral_base();
bound_psi.set_spectral_va().ylm();
p_get_BC_conf_fact = new Scalar(bound_psi);
}
return *p_get_BC_conf_fact ;
}
// Case 0: Source of Dirichlet BC for (b-N), based on an entropy prescription.
// WARNING: the argument value has to be carefully fixed w.r.t initial data for (attempted) continuity.
// Case 1: Source of Dirichlet BC for (b-N), from a component of projected Einstein Equations.
// Requires a 2d poisson solver for a non-flat metric.
const Scalar& Excision_hor::get_BC_bmN(int choice_bmN, double value) const{
if (p_get_BC_bmN == 0x0){
switch(choice_bmN){
case 0 : {
Scalar thetaminus = sph.theta_minus();
Scalar theta_minus3 (lapse.get_mp());
theta_minus3.allocate_all();
theta_minus3.std_spectral_base();
int nz = (*lapse.get_mp().get_mg()).get_nzone();
int nr = (*lapse.get_mp().get_mg()).get_nr(1);
int nt = (*lapse.get_mp().get_mg()).get_nt(1);
int np = (*lapse.get_mp().get_mg()).get_np(1);
for (int f= 0; f<nz; f++)
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
for (int l=0; l<nr; l++) {
theta_minus3.set_grid_point(f,k,j,l) = thetaminus.val_grid_point(0,k,j,0);
}
}
if (nz >2){
theta_minus3.annule_domain(0);
theta_minus3.annule_domain(nz - 1);
}
Scalar bound_bmN(lapse.get_mp());
bound_bmN = - value*theta_minus3; bound_bmN.std_spectral_base();
bound_bmN.set_spectral_va().ylm();
p_get_BC_bmN = new Scalar(bound_bmN);
}
case 1 : {
Scalar bound_bmN(lapse.get_mp());
bound_bmN.allocate_all();
bound_bmN.std_spectral_base();
// Radial vector for the full 3-metric.
Vector sss = gamij.radial_vect();
Vector sss_down = sss.up_down(gamij);
Scalar bb = contract (shift,0, sss_down,0);
Scalar bmN3 = bb - lapse; bmN3.set_spectral_va().ylm();
Scalar bpN3 = bb + lapse; bpN3.set_spectral_va().ylm();
int nt = (*lapse.get_mp().get_mg()).get_nt(1);
int np = (*lapse.get_mp().get_mg()).get_np(1);
Scalar bmN(sph.get_hsurf().get_mp());
bmN.allocate_all();
bmN.std_spectral_base();
bmN.set_spectral_va().ylm();
Scalar bpN(sph.get_hsurf().get_mp());
bpN.allocate_all();
bpN.std_spectral_base();
bpN.set_spectral_va().ylm();
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
bmN.set_grid_point(0,k,j,0) = bmN3.val_grid_point(1,k,j,0);
bpN.set_grid_point(0,k,j,0) = bpN3.val_grid_point(1,k,j,0);
}
Scalar bmN_new(bmN.get_mp());
bmN_new.allocate_all();
bmN_new.std_spectral_base();
double diff_ent = 1.;
double precis = 1.e-9;
int mer_max = 200;
double relax = 0.;
for(int mer=0 ;(diff_ent > precis) && (mer<mer_max) ; mer++) {
// Calculation of some source terms.
Scalar hsurf = sph.get_hsurf();
hsurf.set_spectral_va().ylm();
const Metric_flat& fmets = hsurf.get_mp().flat_met_spher() ;
Scalar shear_up = sph.shear(); shear_up.up_down(sph.get_qab());
Scalar B_source = 0.5*contract(contract(sph.shear(),0, shear_up, 0),0,1) + 4.*M_PI*Tij.trace(sph.get_qab()); // Redo the matter terms.
Scalar A_source = 0.5*sph.get_ricci() - contract(sph.derive_cov2d(sph.get_ll()), 0, 1) - contract(sph.get_ll(),0, sph.get_ll().up_down(sph.get_qab()),0) - 8.*M_PI*Tij.trace(sph.get_qab()); // Redo the matter terms.
Scalar op_bmN_add = - 2.*contract(sph.derive_cov2d(bmN),0, sph.get_ll(),0) + A_source*bmN;
Scalar source_bmN = B_source*bpN - op_bmN_add;
source_bmN.set_spectral_va().ylm();
Scalar sqrtqh2 = sph.sqrt_q()*hsurf*hsurf;
sqrtqh2.set_spectral_va().ylm();
source_bmN = sqrtqh2*source_bmN;
// Conformal decomposition of the 2-metric
Sym_tensor qab_con = sph.get_qab().con();
qab_con = qab_con/(hsurf*hsurf); // Renormalization due to the triad still not built-in spheroid class
//This is provisory work.
// h^ab as q^ab = (f^ab + h^ab) / sqrt_q
Sym_tensor hab =(qab_con*sqrtqh2 - fmets.con()) / (hsurf*hsurf) ;
// for the sake of clarity
hab.set(1,1) = 1. ;
hab.set(1,2) = 0. ;
hab.set(1,3) = 0. ;
hab.std_spectral_base() ;
//end
// Complete source for the angular laplacian.
Scalar d_bmN = sph.derive_cov2dflat(bmN);
d_bmN.set_spectral_va().ylm();
Scalar d2_bmN = sph.derive_cov2dflat(d_bmN);
d2_bmN.set_spectral_va().ylm();
Scalar source_add = - hsurf*hsurf*contract(hab, 0,1, d2_bmN, 0,1) + sqrtqh2*contract(contract(qab_con,0,1,sph.delta(),1,2),0,d_bmN,0) ;
source_add.set_spectral_va().ylm();
source_bmN = source_bmN + source_add;
//
// System inversion
bmN_new = source_bmN.poisson_angu(0.);
// Actualisation of the principal variable, convergence parameter.
diff_ent = max(maxabs(bmN - bmN_new));
bmN = relax*bmN + (1. - relax)*bmN_new;
}
bound_bmN = bmN;
bound_bmN.set_spectral_va().ylm();
p_get_BC_bmN = new Scalar(bound_bmN);
}
}
}
return *p_get_BC_bmN ;
}
// Case 0: Arbitrary Dirichlet BC for (b+N), fixed by a parabolic driver towards a constant value.
// Case 1: Source of Dirichlet BC for (b+N), from a component of projected Einstein Equations.
const Scalar& Excision_hor::get_BC_bpN(int choice_bpN, double c_bpn_lap, double c_bpn_fin, Scalar *bpN_fin) const{
if (p_get_BC_bpN == 0x0){
switch(choice_bpN) {
case 0 : {
Vector sss = gamij.radial_vect();
Vector sss_down = sss.up_down(gamij);
Scalar bb = contract (shift,0, sss_down,0);
Scalar bpN = bb + lapse;
Scalar ff = lapse*(c_bpn_lap*bpN.lapang() + c_bpn_fin*(bpN- *bpN_fin));
ff.std_spectral_base();
// Definition of k_1
Scalar k_1 =delta_t*ff;
// Intermediate value of b-N, for Runge-Kutta 2nd order scheme
Scalar bpN_int = bpN + k_1; bpN_int.std_spectral_base();
// Recalculation of ff with intermediate values.
Scalar ff_int = lapse*(c_bpn_lap*bpN_int.lapang() + c_bpn_fin*bpN_int);
// Definition of k_2
Scalar k_2 = delta_t*ff_int;
k_2.std_spectral_base();
// Result of RK2 evolution
Scalar bound_bpN = bpN + k_2;
bound_bpN.std_spectral_base();
bound_bpN.set_spectral_va().ylm();
p_get_BC_bpN = new Scalar(bound_bpN);
}
case 1 : {
int nz = (*lapse.get_mp().get_mg()).get_nzone();
int nr = (*lapse.get_mp().get_mg()).get_nr(1);
int nt = (*lapse.get_mp().get_mg()).get_nt(1);
int np = (*lapse.get_mp().get_mg()).get_np(1);
Scalar bmN3 = get_BC_bmN(0, 1.); // change the argument.
Scalar bmN(sph.get_hsurf().get_mp());
bmN.allocate_all();
bmN.std_spectral_base();
bmN.set_spectral_va().ylm();
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
bmN.set_grid_point(0,k,j,0) = bmN3.val_grid_point(1,k,j,0);
}
Scalar bound_bpN(lapse.get_mp());
bound_bpN.allocate_all();
bound_bpN.std_spectral_base();
// Definition of source terms in relation (6) of Jaramillo et al. 2007.
// All is done on the spheroid of radius r=1.
Scalar shear_up = sph.shear(); shear_up.up_down(sph.get_qab());
Scalar B_source = 0.5*contract(contract(sph.shear(),0, shear_up, 0),0,1) + 4.*M_PI*Tij.trace(sph.get_qab()); // Redo the matter terms.
Scalar A_source = 0.5*sph.get_ricci() - contract(sph.derive_cov2d(sph.get_ll()), 0, 1) - contract(sph.get_ll(),0, sph.get_ll().up_down(sph.get_qab()),0) - 8.*M_PI*Tij.trace(sph.get_qab()); // Redo the matter terms.
// Curved 2d Laplacian of (b -N).
Sym_tensor interlap = sph.derive_cov2d(sph.derive_cov2d(bmN));
interlap.up(0,sph.get_qab());
Sym_tensor lap_bmN = contract(interlap,0,1);
Scalar op_bmN = lap_bmN - 2.*contract(sph.derive_cov2d(bmN),0, sph.get_ll(),0) + A_source*bmN;
Scalar bound_bpN2 = op_bmN/B_source;
bound_bpN2.std_spectral_base();
bound_bpN2.set_spectral_va().ylm();
for (int f= 0; f<nz; f++)
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
for (int l=0; l<nr; l++) {
bound_bpN.set_grid_point(f,k,j,l) = bound_bpN2.val_grid_point(0,k,j,0);
}
}
if (nz >2){
bound_bpN.annule_domain(0);
bound_bpN.annule_domain(nz - 1);
}
p_get_BC_bpN = new Scalar(bound_bpN);
}
}
}
return *p_get_BC_bpN ;
}
// Source for the Dirichlet BC on the shift
// The tangential shift is fixed using a parabolic driver based on the conformal Killing equation in the dynamical case.
const Vector& Excision_hor::get_BC_shift( double c_V_lap ) const{
if (p_get_BC_shift == 0x0){
// Radial vector for the full 3-metric.
Vector sss = gamij.radial_vect();
Vector sss_down = sss.up_down(gamij);
// // Boundary value for the radial part of the shift: parabolic driver for (b-N)
// Scalar bound = lapse ;
Scalar bb = 0.5*(*p_get_BC_bpN + *p_get_BC_bmN) ; // TO CHANGE: additional function?-> put choice-bb
// Tangent part of the shift, with parabolic driver
Vector V_par = shift - bb*sss;
Sym_tensor q_upup = gamij.con() - sss*sss;
// Calculation of the conformal 2d laplacian of V
Tensor q_updown = q_upup.down(1, gamij);
Tensor dd_V = V_par.derive_con(gamij);
dd_V = contract(q_updown, 1, contract(q_updown,1 ,dd_V, 0), 1);
Vector lap_V = contract(q_updown, 1, contract(dd_V.derive_cov(gamij),1,2), 0);
// 3d interpolation of the Ricci scalar on the surface.
Scalar ricci2 = sph.get_ricci();
// Start Mapping interpolation
Scalar ricci3 (lapse.get_mp());
ricci3.allocate_all();
ricci3.std_spectral_base();
int nz = (*lapse.get_mp().get_mg()).get_nzone();
int nr = (*lapse.get_mp().get_mg()).get_nr(1);
int nt = (*lapse.get_mp().get_mg()).get_nt(1);
int np = (*lapse.get_mp().get_mg()).get_np(1);
for (int f= 0; f<nz; f++)
for (int k=0; k<np; k++)
for (int j=0; j<nt; j++) {
for (int l=0; l<nr; l++) {
ricci3.set_grid_point(f,k,j,l) = ricci2.val_grid_point(0,k,j,0);
}
}
if (nz >2){
ricci3.annule_domain(0);
ricci3.annule_domain(nz - 1);
}
// End Mapping interpolation
// Construction of the Ricci COV tensor on the sphere
Sym_tensor ricci_t = gamij.cov() - sss_down*sss_down;
ricci_t = 0.5*ricci3*ricci_t;
ricci_t.std_spectral_base();
Tensor ricci_t_updown = contract(q_upup,0, ricci_t,0);
// Calculation of ff
Vector ffV = c_V_lap*lapse*(lap_V + contract(ricci_t_updown,1, V_par,0));
ffV.std_spectral_base();
// Definition of k_1
Vector k_1V =delta_t*ffV;
// Intermediate value of Npsi, for Runge-Kutta 2nd order scheme
if (nz >2){
k_1V.annule_domain(nz-1);
} // Patch to avoid dzpuis problems if existent.
Vector V_par_int = V_par + k_1V;// V_par_int.std_spectral_base();
// Recalculation of ff with intermediate values.
Sym_tensor dd_V_int = V_par_int.derive_con(gamij);
dd_V_int = contract(q_updown, 1, contract(q_updown,1 ,dd_V_int, 0), 1);
Vector lap_V_int = contract(q_updown, 1, contract(dd_V_int.derive_cov(gamij),1,2), 0);
Vector ffV_int = c_V_lap*lapse*(lap_V_int + contract(ricci_t_updown,1, V_par_int,0));
// Definition of k_2
Vector k_2V = delta_t*ffV_int;
// k_2.std_spectral_base();
// Result of RK2 evolution
if (nz >2){
k_2V.annule_domain(nz-1);
}
Vector bound_V = V_par + k_2V;
// bound_V.std_spectral_base();
// Construction of the total shift boundary condition
Vector bound_shift = bb*sss + bound_V;
bound_shift.std_spectral_base();
p_get_BC_shift = new Vector(bound_shift);
}
return *p_get_BC_shift ;
}
void Excision_hor::sauve(FILE* ) const {
cout << "c'est pas fait!" << endl ;
return ;
}
}
|