File: excision_lapse_4.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (158 lines) | stat: -rw-r--r-- 4,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

// Header Lorene:
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"
#include "math.h"
#include "metric.h"
#include "param.h"
#include "param_elliptic.h"
#include "tensor.h"
#include "unites.h"
#include "excision_surf.h"
namespace Lorene {
//Sym_tensor secmembre_kerr ( const Sym_tensor& hij, const Sym_tensor& aa,const Scalar& nn,const Scalar& ppsi,const Vector& bb) { 
const Scalar& Excision_surf::get_BC_lapse_4 (Scalar& old_nn, Vector& beta_point, Sym_tensor& strain_tens) const{ 

  using namespace Unites;
  if (p_get_BC_lapse_4 == 0x0){

    Scalar nn = lapse;
    Scalar ppsi = conf_fact;
    Vector bb = shift;
    Sym_tensor aa = Kij.up_down(gamij)*ppsi*ppsi*ppsi*ppsi;
    
  const int nz = (*(aa.get_mp().get_mg())).get_nzone(); 

  Sym_tensor hij = gamij.con();
   for (int ii=1; ii<=3; ii++)
    for(int jj=1; jj<=3; jj++)
      { hij.set(ii,jj).annule_hard();
      }
  hij.annule_domain(nz-1); 
  hij.std_spectral_base();    // Set non conformally flat part to zero.


  const Vector& beta = bb;
 
  const Scalar& psi4 = ppsi*ppsi*ppsi*ppsi;
  Scalar ln_psi = log(ppsi); ln_psi.std_spectral_base();
  ln_psi.annule_domain(nz-1);

  const Scalar qq = nn*ppsi*ppsi; 
   
  
  const Metric_flat& ff = (hij.get_mp()).flat_met_spher() ;
   
  const Sym_tensor& tgam_uu = ff.con(); 
    
  const Base_vect_spher& otriad = hij.get_mp().get_bvect_spher();

  Scalar nn_point(hij.get_mp());
  nn_point.annule_hard();
  nn_point.annule_domain(nz -1);
 
  nn_point.std_spectral_base(); 
 

			               
  const Sym_tensor& tgam_dd = ff.cov() ;    // {\tilde \gamma}_{ij}
  const Vector& dln_psi = ln_psi.derive_cov(ff) ; // D_i ln(Psi)
  const Vector& tdln_psi_u = ln_psi.derive_con(ff) ; // tD^i ln(Psi)
  const Vector& tdnn_u = nn.derive_con(ff) ;       // tD^i N
  const Vector& dqq = qq.derive_cov(ff) ;         // D_i Q
  const Scalar& div_beta = beta.divergence(ff) ;  // D_k beta^k
  Sym_tensor l_beta = beta.ope_killing_conf(ff) ; // Attention aux headers a inclure

  //==================================
  // Source for hij
  //==================================


  Scalar tmp(hij.get_mp()) ;
  Sym_tensor sym_tmp(hij.get_mp(), CON, otriad) ; 
       
  // Full quadratic part of source for h : S^{ij}
  // --------------------------------------------
        
  Sym_tensor ss(hij.get_mp(), CON, otriad) ;  // Source secondaire 
        
  sym_tmp = nn * (8.* tdln_psi_u * tdln_psi_u)
    + 4.*( tdln_psi_u * tdnn_u + tdnn_u * tdln_psi_u ) 
    - 0.3333333333333333 * 
    ( nn * ( 8.* contract(dln_psi, 0, tdln_psi_u, 0) )
      + 8.* contract(dln_psi, 0, tdnn_u, 0) ) *tgam_uu ;

  ss = sym_tmp / psi4  ;
        
  sym_tmp = contract(tgam_uu, 1, 
		     contract(tgam_uu, 1, dqq.derive_cov(ff), 0), 1) ;
                            
  sym_tmp.inc_dzpuis() ; // dzpuis : 3 --> 4

  tmp = qq.derive_con(ff).divergence(ff) ; 
  tmp.inc_dzpuis() ; // dzpuis : 3 --> 4  

  sym_tmp -= 0.3333333333333333 * tmp *tgam_uu ; 
                    
  ss -= sym_tmp / (psi4*ppsi*ppsi) ;  // Voir dans quel sens sont construits psi et psi4 (eviter les multiplications d'erreurs)

  for (int i=1; i<=3; i++) {
    for (int j=1; j<=i; j++) {
      tmp = 0 ; 
      for (int k=1; k<=3; k++) {
	for (int l=1; l<=3; l++) {
	  tmp += tgam_dd(k,l) * aa(i,k) * aa(j,l) ; 
	}
      }
      sym_tmp.set(i,j) = tmp ; 
    }
  }
        
  tmp = psi4 * strain_tens.trace(ff) ; // S = S_i^i 

  ss += (2.*nn) * ( sym_tmp );
  Sym_tensor ss2 =2.*nn*( qpig*(psi4*strain_tens - 0.33333333333333 * tmp * tgam_uu));

  ss2.annule_domain(nz-1); //Dont care, i want only data on the horizon...

  ss += -ss2;
  
  // Source for h^{ij} 
  // -----------------
                

 Sym_tensor source_hh = 2.* nn * ss ;
  source_hh += 2. *  nn.derive_lie(beta) * aa  ;  //HERE

  // Term (d/dt - Lie_beta) (L beta)^{ij}--> sym_tmp        
  // ---------------------------------------

  sym_tmp = beta_point.ope_killing_conf(ff);
  sym_tmp.annule_domain(nz-1);
  sym_tmp = sym_tmp - l_beta.derive_lie(beta) ;
  
  sym_tmp.annule_domain(nz-1); 
  

  // Final source:
  // ------------
  source_hh += 0.6666666666666666* div_beta * l_beta - sym_tmp ; 

Scalar dNdt(hij.get_mp());

 dNdt = -source_hh(1,1)/2.*aa(1,1); // Take any component as long as the aa part does not vanish...

 dNdt.annule_domain(nz-1);

Scalar bound_N = old_nn + dNdt*delta_t; bound_N.std_spectral_base();
 bound_N.set_spectral_va().ylm();
 
 p_get_BC_lapse_4 = new Scalar(bound_N); 
    
}
return *p_get_BC_lapse_4 ;
}


}