1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/*
* Methods of class Bin_hor
*
* (see file bin_hor.h for documentation)
*
*/
/*
* Copyright (c) 2004-2005 Francois Limousin
* Jose Luis Jaramillo
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char bin_hor_C[] = "$Header: /cvsroot/Lorene/C++/Source/Bin_hor/bin_hor.C,v 1.12 2014/10/13 08:52:42 j_novak Exp $" ;
/*
* $Id: bin_hor.C,v 1.12 2014/10/13 08:52:42 j_novak Exp $
* $Log: bin_hor.C,v $
* Revision 1.12 2014/10/13 08:52:42 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.11 2014/10/06 15:13:00 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.10 2007/04/13 15:28:55 f_limousin
* Lots of improvements, generalisation to an arbitrary state of
* rotation, implementation of the spatial metric given by Samaya.
*
* Revision 1.9 2006/08/01 14:37:19 f_limousin
* New version
*
* Revision 1.8 2006/06/29 08:51:00 f_limousin
* *** empty log message ***
*
* Revision 1.7 2006/06/28 13:36:09 f_limousin
* Convergence to a given irreductible mass
*
* Revision 1.6 2006/05/24 16:56:37 f_limousin
* Many small modifs.
*
* Revision 1.5 2005/06/13 15:47:29 jl_jaramillo
* Add some quatities in write_global()
*
* Revision 1.4 2005/06/09 16:12:04 f_limousin
* Implementation of amg_mom_adm().
*
* Revision 1.3 2005/04/29 14:02:44 f_limousin
* Important changes : manage the dependances between quantities (for
* instance psi and psi4). New function write_global(ost).
*
* Revision 1.2 2005/03/04 09:38:41 f_limousin
* Implement the constructor from a file, operator>>, operator<<
* and function sauve.
*
* Revision 1.1 2004/12/29 16:11:02 f_limousin
* First version
*
*
* $Header: /cvsroot/Lorene/C++/Source/Bin_hor/bin_hor.C,v 1.12 2014/10/13 08:52:42 j_novak Exp $
*
*/
//standard
#include <cstdlib>
#include <cmath>
// Lorene
#include "nbr_spx.h"
#include "tenseur.h"
#include "tensor.h"
#include "isol_hor.h"
#include "proto.h"
#include "utilitaires.h"
//#include "graphique.h"
// Standard constructor
// --------------------
namespace Lorene {
Bin_hor::Bin_hor (Map_af& mp1, Map_af& mp2) :
hole1(mp1), hole2(mp2), omega(0){
holes[0] = &hole1 ;
holes[1] = &hole2 ;
}
// Copy constructor
// ----------------
Bin_hor::Bin_hor (const Bin_hor& source) :
hole1(source.hole1), hole2(source.hole2), omega(source.omega) {
holes[0] = &hole1 ;
holes[1] = &hole2 ;
}
// Constructor from a file
// -----------------------
Bin_hor::Bin_hor(Map_af& mp1, Map_af& mp2, FILE* fich)
: hole1(mp1, fich),
hole2(mp2, fich),
omega(0) {
fread_be(&omega, sizeof(double), 1, fich) ;
holes[0] = &hole1 ;
holes[1] = &hole2 ;
}
//--------------//
// Destructor //
//--------------//
Bin_hor::~Bin_hor () {
}
//-----------------------//
// Mutators / assignment //
//-----------------------//
void Bin_hor::operator= (const Bin_hor& source) {
hole1 = source.hole1 ;
hole2 = source.hole2 ;
omega = source.omega ;
}
//--------------------------//
// Save in a file //
//--------------------------//
void Bin_hor::sauve(FILE* fich) const {
hole1.sauve(fich) ;
hole2.sauve(fich) ;
fwrite_be (&omega, sizeof(double), 1, fich) ;
}
//Initialisation : Sum of two static BH
void Bin_hor::init_bin_hor() {
set_omega (0) ;
hole1.init_bhole() ;
hole2.init_bhole() ;
hole1.psi_comp_import(hole2) ;
hole2.psi_comp_import(hole1) ;
hole1.n_comp_import(hole2) ;
hole2.n_comp_import(hole1) ;
decouple() ;
extrinsic_curvature() ;
}
void Bin_hor::write_global(ostream& ost, double lim_nn, int bound_nn,
int bound_psi, int bound_beta, double alpha) const {
double distance = hole1.get_mp().get_ori_x() - hole2.get_mp().get_ori_x() ;
double mass_adm = adm_mass() ;
double mass_komar = komar_mass() ;
double mass_area = sqrt(hole1.area_hor()/16/M_PI) +
sqrt(hole2.area_hor()/16/M_PI) ;
double J_adm = ang_mom_adm() ;
double J_hor = ang_mom_hor() ; //hole1.ang_mom_hor() + hole2.ang_mom_hor() ;
double j1 = hole1.ang_mom_hor() ;
double j2 = hole2.ang_mom_hor() ;
double mass_ih1 = hole1.mass_hor() ;
double mass_ih2 = hole2.mass_hor() ;
double mass_ih = mass_ih1 + mass_ih2 ;
double omega1 = hole1.omega_hor() ;
double omega2 = hole2.omega_hor() ;
// Verification of Smarr :
// -----------------------
// Les alignemenents pour le signe des CL.
double orientation1 = hole1.mp.get_rot_phi() ;
assert ((orientation1 == 0) || (orientation1 == M_PI)) ;
int aligne1 = (orientation1 == 0) ? 1 : -1 ;
Vector angular1 (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
Scalar yya1 (hole1.mp) ;
yya1 = hole1.mp.ya ;
Scalar xxa1 (hole1.mp) ;
xxa1 = hole1.mp.xa ;
angular1.set(1) = aligne1 * omega * yya1 ;
angular1.set(2) = - aligne1 * omega * xxa1 ;
angular1.set(3).annule_hard() ;
angular1.set(1).set_spectral_va()
.set_base(*(hole1.mp.get_mg()->std_base_vect_cart()[0])) ;
angular1.set(2).set_spectral_va()
.set_base(*(hole1.mp.get_mg()->std_base_vect_cart()[1])) ;
angular1.set(3).set_spectral_va()
.set_base(*(hole1.mp.get_mg()->std_base_vect_cart()[2])) ;
angular1.change_triad(hole1.mp.get_bvect_spher()) ;
double orientation2 = hole2.mp.get_rot_phi() ;
assert ((orientation2 == 0) || (orientation2 == M_PI)) ;
int aligne2 = (orientation2 == 0) ? 1 : -1 ;
Vector angular2 (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
Scalar yya2 (hole2.mp) ;
yya2 = hole2.mp.ya ;
Scalar xxa2 (hole2.mp) ;
xxa2 = hole2.mp.xa ;
angular2.set(1) = aligne2 * omega * yya2 ;
angular2.set(2) = - aligne2 * omega * xxa2 ;
angular2.set(3).annule_hard() ;
angular2.set(1).set_spectral_va()
.set_base(*(hole2.mp.get_mg()->std_base_vect_cart()[0])) ;
angular2.set(2).set_spectral_va()
.set_base(*(hole2.mp.get_mg()->std_base_vect_cart()[1])) ;
angular2.set(3).set_spectral_va()
.set_base(*(hole2.mp.get_mg()->std_base_vect_cart()[2])) ;
angular2.change_triad(hole2.mp.get_bvect_spher()) ;
Scalar btilde1 (hole1.b_tilde() -
contract(angular1, 0, hole1.tgam.radial_vect().up_down(hole1.tgam), 0)) ;
Scalar btilde2 (hole2.b_tilde() -
contract(angular2, 0, hole2.tgam.radial_vect().up_down(hole2.tgam), 0)) ;
Vector integrand_un (hole1.mp, COV, hole1.mp.get_bvect_spher()) ;
integrand_un = hole1.nn.derive_cov(hole1.ff)*pow(hole1.psi, 2)
- btilde1*contract(hole1.get_k_dd(), 1,
hole1.tgam.radial_vect(), 0)*pow(hole1.psi, 2) ;
integrand_un.std_spectral_base() ;
Vector integrand_deux (hole2.mp, COV, hole2.mp.get_bvect_spher()) ;
integrand_deux = hole2.nn.derive_cov(hole2.ff)*pow(hole2.psi, 2)
- btilde2*contract(hole2.get_k_dd(), 1,
hole2.tgam.radial_vect(), 0)*pow(hole2.psi, 2) ;
integrand_deux.std_spectral_base() ;
double horizon = hole1.mp.integrale_surface(integrand_un(1),
hole1.get_radius())+
hole2.mp.integrale_surface(integrand_deux(1), hole2.get_radius()) ;
horizon /= 4*M_PI ;
double J_smarr = (mass_komar - horizon) / 2. / omega ;
ost.precision(8) ;
ost << "# Grid : " << hole1.mp.get_mg()->get_nr(1) << "x"
<< hole1.mp.get_mg()->get_nt(1) << "x"
<< hole1.mp.get_mg()->get_np(1) << " R_out(l) : " ;
for (int ll=0; ll<hole1.mp.get_mg()->get_nzone(); ll++) {
ost << " " << hole1.mp.val_r(ll, 1., M_PI/2, 0) ;
}
ost << endl ;
ost << "# bound N, lim N : " << bound_nn << " " << lim_nn
<< " - bound Psi : " << bound_psi << " - bound shift : " << bound_beta
<< " alpha = " << alpha << endl ;
ost << "# distance omega Mass_ADM Mass_K M_area J_ADM J_hor" << endl ;
ost << distance << " " ;
ost << omega << " " ;
ost << mass_adm << " " ;
ost << mass_komar << " " ;
ost << mass_area << " " ;
ost << J_adm << " " ;
ost << J_hor << endl ;
ost << "# mass_ih1 mass_ih2 mass_ih j1 J2 omega1 omega2" << endl ;
ost << mass_ih1 << " " ;
ost << mass_ih2 << " " ;
ost << mass_ih << " " ;
ost << j1 << " " ;
ost << j2 << " " ;
ost << omega1 << " " ;
ost << omega2 << endl ;
ost << "# ADM_mass/M_area J/M_area2 omega*M_area" << endl ;
ost << mass_adm / mass_area << " " ;
ost << J_adm /mass_area / mass_area << " " ;
ost << omega * mass_area << endl ;
ost << "# Diff J_hor/J_ADM Diff J_ADM/J_Smarr Diff J_hor/J_smarr"
<< endl ;
ost << fabs(J_adm - J_hor) / J_adm << " " << fabs(J_adm - J_smarr) / J_adm
<< " " << fabs(J_hor - J_smarr) / J_hor << endl ;
}
}
|