File: binhor_coal.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (301 lines) | stat: -rw-r--r-- 10,046 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*
 *   Copyright (c) 2004-2005 Francois Limousin
 *                           Jose-Luis Jaramillo
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char binhor_coal_C[] = "$Header: /cvsroot/Lorene/C++/Source/Bin_hor/binhor_coal.C,v 1.15 2014/10/13 08:52:42 j_novak Exp $" ;

/*
 * $Id: binhor_coal.C,v 1.15 2014/10/13 08:52:42 j_novak Exp $
 * $Log: binhor_coal.C,v $
 * Revision 1.15  2014/10/13 08:52:42  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.14  2014/10/06 15:13:01  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.13  2007/04/13 15:28:55  f_limousin
 * Lots of improvements, generalisation to an arbitrary state of
 * rotation, implementation of the spatial metric given by Samaya.
 *
 * Revision 1.12  2006/08/01 14:37:19  f_limousin
 * New version
 *
 * Revision 1.11  2006/06/28 13:36:09  f_limousin
 * Convergence to a given irreductible mass
 *
 * Revision 1.10  2006/05/24 16:56:37  f_limousin
 * Many small modifs.
 *
 * Revision 1.9  2005/09/13 18:33:15  f_limousin
 * New function vv_bound_cart_bin(double) for computing binaries with
 * berlin condition for the shift vector.
 * Suppress all the symy and asymy in the importations.
 *
 * Revision 1.8  2005/07/11 08:21:57  f_limousin
 * Implementation of a new boundary condition for the lapse in the binary
 * case : boundary_nn_Dir_lapl().
 *
 * Revision 1.7  2005/03/10 17:21:52  f_limousin
 * Add the Berlin boundary condition for the shift.
 * Some changes to avoid warnings.
 *
 * Revision 1.6  2005/03/10 17:09:05  f_limousin
 * Display the logarithm of viriel and convergence.
 *
 * Revision 1.5  2005/03/10 16:57:00  f_limousin
 * Improve the convergence of the code coal_bh.
 *
 * Revision 1.4  2005/02/24 17:24:26  f_limousin
 * The boundary conditions for psi, N and beta are now parameters in
 * par_init.d and par_coal.d.
 *
 * Revision 1.3  2005/02/07 10:43:36  f_limousin
 * Add the printing of the regularisation of the shift in the case N=0
 * on the horizon.
 *
 * Revision 1.2  2004/12/31 15:40:21  f_limousin
 * Improve the initialisation of several quantities in set_statiques().
 *
 * Revision 1.1  2004/12/29 16:11:19  f_limousin
 * First version
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Bin_hor/binhor_coal.C,v 1.15 2014/10/13 08:52:42 j_novak Exp $
 *
 */

//standard
#include <cstdlib>

// Lorene
#include "tensor.h"
#include "isol_hor.h"
#include "graphique.h"


namespace Lorene {
void Bin_hor::set_statiques (double precis, double relax, int bound_nn,
			     double lim_nn, int bound_psi) {
    
  int nz = hole1.mp.get_mg()->get_nzone() ;
    
  set_omega(0) ;
  hole1.init_met_trK() ;
  hole2.init_met_trK() ;
  init_bin_hor() ;
  extrinsic_curvature() ;
      
  int indic = 1 ;
  int conte = 0 ;
 
  cout << "Static black holes : " << endl ;
  while (indic == 1) {
    Scalar lapse_un_old (hole1.n_auto) ;

    solve_psi (precis, relax, bound_psi) ;
    solve_lapse (precis, relax, bound_nn, lim_nn) ;

    //	des_profile(hole1.nn(), 0, 20, M_PI/2, M_PI) ;

    double erreur = 0 ;
    Tbl diff (diffrelmax (lapse_un_old, hole1.n_auto)) ;
    for (int i=1 ; i<nz ; i++)
      if (diff(i) > erreur)
	erreur = diff(i) ;
	
    cout << "Step : " << conte << " Difference : " << erreur << endl ;
	
    if (erreur < precis)
      indic = -1 ;
    conte ++ ;
  }
}

double Bin_hor::coal (double angu_vel, double relax, int nb_ome,
		      int nb_it, int bound_nn, double lim_nn, 
		      int bound_psi, int bound_beta, double omega_eff,
		      double alpha,
		      ostream& fich_iteration, ostream& fich_correction,
		      ostream& fich_viriel, ostream& fich_kss, 
		      int step, int search_mass, double mass_irr, 
		      const int sortie) {
    
  int nz = hole1.mp.get_mg()->get_nzone() ;

  double precis = 1e-7 ;
    
  // LOOP INCREASING OMEGA  : 
  cout << "OMEGA INCREASED STEP BY STEP." << endl ;
  double homme = get_omega() ;
  double inc_homme = (angu_vel - homme)/nb_ome ;
  for (int pas = 0 ; pas <nb_ome ; pas ++) {
      
    bool verif = false ;
    if (omega_eff == alpha*homme ) verif = true ;
      
    homme += inc_homme ;
    set_omega (homme) ;
    if (verif)
      omega_eff = alpha*homme ;
    Scalar beta_un_old (hole1.beta_auto(1)) ;
      
    solve_shift (precis, relax, bound_beta, omega_eff) ;
    extrinsic_curvature() ;

    solve_psi (precis, relax, bound_psi) ;
    solve_lapse (precis, relax, bound_nn, lim_nn) ;
	
    // Convergence to the given irreductible mass 
    if (search_mass == 1 && step >= 30) {
      double mass_area = sqrt(hole1.area_hor()/16/M_PI) + 
	sqrt(hole2.area_hor()/16/M_PI) ;
      double error_m = (mass_irr - mass_area) / mass_irr ;
      double scaling_r = pow((2-error_m)/(2-2*error_m), 1.) ;
      hole1.mp.homothetie_interne(scaling_r) ;
      hole1.radius = hole1.radius *scaling_r ;
      hole2.mp.homothetie_interne(scaling_r) ;
      hole2.radius = hole2.radius *scaling_r ;
	
      // Update of the different metrics (another possibility would 
      // be to set all derived quantities to 0x0, especially
      // the connection p_connect
      hole1.ff = hole1.mp.flat_met_spher() ;
      hole1.tgam = hole1.mp.flat_met_spher() ;
      hole2.ff = hole2.mp.flat_met_spher() ;
      hole2.tgam = hole1.mp.flat_met_spher() ;
	
    }
      
    cout << "Angular momentum computed at the horizon : " << ang_mom_hor()
	 << endl ;
      
    double erreur = 0 ;
    Tbl diff (diffrelmax (beta_un_old, hole1.beta_auto(1))) ;
    for (int i=1 ; i<nz ; i++)
      if (diff(i) > erreur)
	erreur = diff(i) ;
      
    // Saving ok K_{ij}s^is^j
    // -----------------------
	
    Scalar kkss (contract(hole1.get_k_dd(), 0, 1, 
			  hole1.get_gam().radial_vect()*
			  hole1.get_gam().radial_vect(), 0, 1)) ;
    double max_kss = kkss.val_grid_point(1, 0, 0, 0) ;
    double min_kss = kkss.val_grid_point(1, 0, 0, 0) ;
    int nnp = hole1.mp.get_mg()->get_np(1) ;
    int nnt = hole2.mp.get_mg()->get_nt(1) ;
    for (int k=0 ; k<nnp ; k++)
      for (int j=0 ; j<nnt ; j++){
	if (kkss.val_grid_point(1, k, j, 0) > max_kss)
	  max_kss = kkss.val_grid_point(1, k, j, 0) ;
	if (kkss.val_grid_point(1, k, j, 0) < min_kss)
	  min_kss = kkss.val_grid_point(1, k, j, 0) ;
      }

    if (sortie != 0) {
      fich_iteration << step << " " << log10(erreur) << " " << homme << endl ;
      fich_correction << step << " " << log10(hole1.regul) << " " << homme << endl ;
      //	  fich_viriel << step << " " << log10(fabs(viriel())) << " " << homme << endl ;
      fich_viriel << step << " " << viriel() << " " << homme << " " << hole1.omega_hor() - alpha*homme << " " << omega_eff << endl ;
      fich_kss << step << " " << max_kss << " " << min_kss << endl ;
    }
	    
    cout << "STEP : " << step << " DIFFERENCE : " << erreur << endl ;
    step ++ ;
  }
    
  // LOOP WITH FIXED OMEGA :

  if (nb_it !=0)
    cout << "OMEGA FIXED" << endl ;
  double erreur ;

  for (int pas = 0 ; pas <nb_it ; pas ++) {
	
    Scalar beta_un_old (hole1.beta_auto(1)) ;

    solve_shift (precis, relax, bound_beta, omega_eff) ;
    extrinsic_curvature() ;

    solve_psi (precis, relax, bound_psi) ;
    solve_lapse (precis, relax, bound_nn, lim_nn) ;

    // Convergence to the given irreductible mass 
    if (search_mass == 1 && step >= 30) {
      double mass_area = sqrt(hole1.area_hor()/16/M_PI) + 
	sqrt(hole2.area_hor()/16/M_PI) ;
      double error_m = (mass_irr - mass_area) / mass_irr ;
      double scaling_r = pow((2-error_m)/(2-2*error_m), 1.) ;
	  
      hole1.mp.homothetie_interne(scaling_r) ;
      hole1.radius = hole1.radius *scaling_r ;
      hole2.mp.homothetie_interne(scaling_r) ;
      hole2.radius = hole2.radius *scaling_r ;
    }

    erreur = 0 ;
    Tbl diff (diffrelmax (beta_un_old, hole1.beta_auto(1))) ;
    for (int i=1 ; i<nz ; i++)
      if (diff(i) > erreur)
	erreur = diff(i) ;

    // Saving ok K_{ij}s^is^j
    // -----------------------
	
    Scalar kkss (contract(hole1.get_k_dd(), 0, 1, 
			  hole1.get_gam().radial_vect()*
			  hole1.get_gam().radial_vect(), 0, 1)) ;
    double max_kss = kkss.val_grid_point(1, 0, 0, 0) ;
    double min_kss = kkss.val_grid_point(1, 0, 0, 0) ;
    int nnp = hole1.mp.get_mg()->get_np(1) ;
    int nnt = hole2.mp.get_mg()->get_nt(1) ;
    for (int k=0 ; k<nnp ; k++)
      for (int j=0 ; j<nnt ; j++){
	if (kkss.val_grid_point(1, k, j, 0) > max_kss)
	  max_kss = kkss.val_grid_point(1, k, j, 0) ;
	if (kkss.val_grid_point(1, k, j, 0) < min_kss)
	  min_kss = kkss.val_grid_point(1, k, j, 0) ;
      }

	
    if (sortie != 0) {
      fich_iteration << step << " " << log10(erreur) << " " << homme << endl ;
      fich_correction << step << " " << log10(hole1.regul) << " " << homme << endl ;
      //	  fich_viriel << step << " " << log10(fabs(viriel())) << " " << homme << endl ;
      fich_viriel << step << " " << viriel() << " " << homme << " " << hole1.omega_hor() - alpha*homme << " " << omega_eff << endl ;
      fich_kss << step << " " << max_kss << " " << min_kss << endl ;
    }

    cout << "STEP : " << step << " DIFFERENCE : " << erreur << endl ;
    step ++ ;
  }

  if (nb_it != 0){
    fich_iteration << "#----------------------------"  << endl ;
    fich_correction << "#-----------------------------" << endl ;
    fich_viriel << "#------------------------------"  << endl ;
  }

  return viriel() ;
}
}