File: binhor_global.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (349 lines) | stat: -rw-r--r-- 10,532 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 *   Copyright (c) 2005 Francois Limousin
 *                      Jose Luis Jaramillo
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char binhor_glob_C[] = "$Header: /cvsroot/Lorene/C++/Source/Bin_hor/binhor_global.C,v 1.10 2014/10/13 08:52:42 j_novak Exp $" ;

/*
 * $Id: binhor_global.C,v 1.10 2014/10/13 08:52:42 j_novak Exp $
 * $Log: binhor_global.C,v $
 * Revision 1.10  2014/10/13 08:52:42  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.9  2014/10/06 15:13:01  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.8  2007/04/13 15:28:55  f_limousin
 * Lots of improvements, generalisation to an arbitrary state of
 * rotation, implementation of the spatial metric given by Samaya.
 *
 * Revision 1.7  2006/05/24 16:56:37  f_limousin
 * Many small modifs.
 *
 * Revision 1.6  2005/09/24 08:31:38  f_limousin
 * Improve the computation of moment_adm() and moment_hor().
 *
 * Revision 1.5  2005/09/13 18:33:15  f_limousin
 * New function vv_bound_cart_bin(double) for computing binaries with
 * berlin condition for the shift vector.
 * Suppress all the symy and asymy in the importations.
 *
 * Revision 1.4  2005/06/09 16:12:04  f_limousin
 * Implementation of amg_mom_adm().
 *
 * Revision 1.3  2005/04/29 14:02:44  f_limousin
 * Important changes : manage the dependances between quantities (for
 * instance psi and psi4). New function write_global(ost).
 *
 * Revision 1.2  2005/03/04 17:09:57  jl_jaramillo
 * Change to avoid warnings
 *
 * Revision 1.1  2005/03/03 13:48:56  f_limousin
 * First version
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Bin_hor/binhor_global.C,v 1.10 2014/10/13 08:52:42 j_novak Exp $
 *
 */



//standard
#include <cstdlib>
#include <cmath>

// Lorene
#include "nbr_spx.h"
#include "tensor.h"
#include "isol_hor.h"
#include "proto.h"
#include "utilitaires.h"
//#include "graphique.h"

namespace Lorene {
double Bin_hor::adm_mass() const {
 
   Vector dpsi_un (hole1.psi_auto.derive_con(hole1.ff)) ;
    Vector dpsi_deux (hole2.psi_auto.derive_con(hole2.ff)) ;
    
    Tensor hdirac1 (contract((hole1.hh).derive_cov(hole1.ff),0,2)) ;
    Vector ww (0.125*(hdirac1 - (hole1.hh.trace(hole1.ff)).
		      derive_con(hole1.ff))) ;

    double inf = hole1.mp.val_r(hole1.mp.get_mg()->get_nzone()-1, 1., 0., 0.) ;
    
    double masse = dpsi_un.flux(inf, hole1.ff) + 
	           dpsi_deux.flux(inf, hole2.ff) +
	           ww.flux(inf, hole1.ff) ;
    masse /= -2*M_PI ;
    return masse ;
}

double Bin_hor::komar_mass() const {

    Vector dnn_un (hole1.n_auto.derive_con(hole1.ff)) ;
    Vector dnn_deux (hole2.n_auto.derive_con(hole2.ff)) ;
    
    Vector ww (contract(hole1.hh, 1, hole1.nn.derive_cov(hole1.ff), 0)) ;
	       
    double inf = hole1.mp.val_r(hole1.mp.get_mg()->get_nzone()-1, 1., 0., 0.) ;

    double mass = dnn_un.flux(inf, hole1.ff) + 
	dnn_deux.flux(inf, hole2.ff) + 
	ww.flux(inf, hole1.ff) ;
    
    mass /= 4*M_PI ;
    return mass ;
}
    
double Bin_hor::ang_mom_hor() const {
    
    if (omega == 0)
	return 0 ;
    else {
	// Alignement
	double orientation_un = hole1.mp.get_rot_phi() ;
	assert ((orientation_un==0) || (orientation_un==M_PI)) ;
	double orientation_deux = hole2.mp.get_rot_phi() ;
	assert ((orientation_deux==0) || (orientation_deux==M_PI)) ;
	int same_orient = (orientation_un == orientation_deux) ? 1 : -1 ;
	
	// Integral on the first horizon :
	Scalar xa_un (hole1.mp) ;
	xa_un = hole1.mp.xa ;
	xa_un.std_spectral_base() ;
	
	Scalar ya_un (hole1.mp) ;
	ya_un = hole1.mp.ya ;
	ya_un.std_spectral_base() ;
	
	Sym_tensor tkij_un (hole1.aa) ;
	tkij_un.change_triad(hole1.mp.get_bvect_cart()) ;

	Vector vecteur_un (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
	for (int i=1 ; i<=3 ; i++)
	    vecteur_un.set(i) = -ya_un*tkij_un(1, i)+
		xa_un * tkij_un(2, i) ;
	vecteur_un.annule_domain(hole1.mp.get_mg()->get_nzone()-1) ;
	vecteur_un.change_triad (hole1.mp.get_bvect_spher()) ;
	
	Scalar integrant_un (hole1.get_psi4()*hole1.psi*hole1.psi
			     *vecteur_un(1)) ;
	double moment_un = hole1.mp.integrale_surface
	    (integrant_un, hole1.radius+1e-12)/8/M_PI ;
	
	//Integral on the second horizon :
	Scalar xa_deux (hole2.mp) ;
	xa_deux = hole2.mp.xa ;
	xa_deux.std_spectral_base() ;
	
	Scalar ya_deux (hole2.mp) ;
	ya_deux = hole2.mp.ya ;
	ya_deux.std_spectral_base() ;
	
	Sym_tensor tkij_deux (hole2.aa) ;
	tkij_deux.change_triad(hole2.mp.get_bvect_cart()) ;

	Vector vecteur_deux (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
	for (int i=1 ; i<=3 ; i++)
	    vecteur_deux.set(i) = -ya_deux*tkij_deux(1, i)+
		xa_deux * tkij_deux(2, i) ;
	vecteur_deux.annule_domain(hole2.mp.get_mg()->get_nzone()-1) ;
	vecteur_deux.change_triad (hole2.mp.get_bvect_spher()) ;
	
	Scalar integrant_deux (hole2.get_psi4()*hole2.psi*hole2.psi
			       *vecteur_deux(1)) ;
	double moment_deux = hole2.mp.integrale_surface
	    (integrant_deux, hole2.radius+1e-12)/8/M_PI ;
	
	return moment_un+same_orient*moment_deux ;
	}
}



double Bin_hor::ang_mom_adm() const {
/*    
    Scalar integrand_un (hole1.k_dd()(1,3) - hole1.gam_dd()(1,3) * hole1.trK) ;
    
    integrand_un.mult_rsint() ;  // in order to pass from the triad components
    
    double mom = hole1.mp.integrale_surface_infini(integrand_un) ;    
    mom /= 8*M_PI ;
    return mom ;
*/

    if (omega == 0)
	return 0 ;
    else {
	// Alignement 
	double orientation_un = hole1.mp.get_rot_phi() ;
	assert ((orientation_un==0) || (orientation_un==M_PI)) ;
	double orientation_deux = hole2.mp.get_rot_phi() ;
	assert ((orientation_deux==0) || (orientation_deux==M_PI)) ;
	int same_orient = (orientation_un == orientation_deux) ? 1 : -1 ;
	
	// Construction of an auxiliar grid and mapping
	int nzones = hole1.mp.get_mg()->get_nzone() ;
	double* bornes = new double [nzones+1] ;
	double courant = (hole1.mp.get_ori_x()-hole2.mp.get_ori_x())+1 ;
	for (int i=nzones-1 ; i>0 ; i--) {
	bornes[i] = courant ;
	courant /= 2. ;
	}
	bornes[0] = 0 ;
	bornes[nzones] = __infinity ;
	
	Map_af mapping (*hole1.mp.get_mg(), bornes) ;
	
	delete [] bornes ; 
	
	// Construction of k_total
	Sym_tensor k_total (mapping, CON, mapping.get_bvect_cart()) ;
	
	Vector shift_un (mapping, CON, mapping.get_bvect_cart()) ;
	Vector shift_deux (mapping, CON, mapping.get_bvect_cart()) ;
	
	Vector beta_un (hole1.beta_auto) ;
	Vector beta_deux (hole2.beta_auto) ;
	beta_un.change_triad(hole1.mp.get_bvect_cart()) ;
	beta_deux.change_triad(hole2.mp.get_bvect_cart()) ;
	
	shift_un.set(1).import(beta_un(1)) ;
	shift_un.set(2).import(beta_un(2)) ;
	shift_un.set(3).import(beta_un(3)) ;
	
	shift_deux.set(1).import(same_orient*beta_deux(1)) ;
	shift_deux.set(2).import(same_orient*beta_deux(2)) ;
	shift_deux.set(3).import(beta_deux(3)) ;
	
	Vector shift_tot (shift_un+shift_deux) ;
	shift_tot.std_spectral_base() ;
	shift_tot.annule(0, nzones-2) ;

	// Substract the residuals
	shift_tot.inc_dzpuis(2) ;
	shift_tot.dec_dzpuis(2) ;
	
	const Metric_flat& flat0 (mapping.flat_met_cart()) ;

	k_total = shift_tot.ope_killing_conf(flat0) / 2. ;
	//- flat0.con() * hole1.trK;

	for (int lig=1 ; lig<=3 ; lig++)
	    for (int col=lig ; col<=3 ; col++)
		k_total.set(lig, col).mult_r_ced() ;
	
	Vector vecteur_un (mapping, CON, mapping.get_bvect_cart()) ;
	for (int i=1 ; i<=3 ; i++)
	    vecteur_un.set(i) = k_total(1, i) ;
	vecteur_un.change_triad (mapping.get_bvect_spher()) ;
	Scalar integrant_un (vecteur_un(1)) ;
	
	Vector vecteur_deux (mapping, CON, mapping.get_bvect_cart()) ;
	for (int i=1 ; i<=3 ; i++)
	    vecteur_deux.set(i) = k_total(2, i) ;
	vecteur_deux.change_triad (mapping.get_bvect_spher()) ;
	Scalar integrant_deux (vecteur_deux(1)) ;
	
	// Multiplication by y and x :
	integrant_un.set_spectral_va() = integrant_un.get_spectral_va()
	    .mult_st() ;
	integrant_un.set_spectral_va() = integrant_un.get_spectral_va()
	    .mult_sp() ;
	
	integrant_deux.set_spectral_va() = integrant_deux.get_spectral_va()
	    .mult_st() ;
	integrant_deux.set_spectral_va() = integrant_deux.get_spectral_va()
	    .mult_cp() ;
	
	double moment = mapping.integrale_surface_infini (-integrant_un
							  +integrant_deux) ;
	
	moment /= 8*M_PI ;
	
	return moment ;
    }
}


/*
double Bin_hor::proper_distance(const int nr) const {
    

    // On determine les rayons coordonnes des points limites de l'integrale :
    double x_un = hole1.mp.get_ori_x() - hole1.rayon ;
    double x_deux = hole2.mp.get_ori_x() + hole2.rayon ;
    
    // Les coefficients du changement de variable :
    double pente = 2./(x_un-x_deux) ;
    double constante = - (x_un+x_deux)/(x_un-x_deux) ;
    
    
    double ksi ; // variable d'integration.
    double xabs ; // x reel.
    double air_un, theta_un, phi_un ; // coordonnee spheriques 1
    double air_deux, theta_deux, phi_deux ; // coordonnee spheriques 2
    
    double* coloc = new double[nr] ;
    double* coef = new double[nr] ;
    int* deg = new int[3] ;
    deg[0] = 1 ; deg[1] = 1 ; deg[2] = nr ;
    
    for (int i=0 ; i<nr ; i++) {
	ksi = -cos (M_PI*i/(nr-1)) ;
	xabs = (ksi-constante)/pente ;
	
	hole1.mp.convert_absolute (xabs, 0, 0, air_un, theta_un, phi_un) ;
	hole2.mp.convert_absolute (xabs, 0, 0, air_deux, theta_deux, phi_deux) ;
	
	coloc[i] = pow (hole1.psi_auto().val_point (air_un, theta_un, phi_un) +
		   hole2.psi_auto().val_point (air_deux, theta_deux, phi_deux), 2.) ;
    }
    
    // On prend les coefficients de la fonction
    cfrcheb(deg, deg, coloc, deg, coef) ;
    
    // On integre
    double* som = new double[nr] ;
    som[0] = 2 ;
    for (int i=2 ; i<nr ; i+=2)
	som[i] = 1./(i+1)-1./(i-1) ;
    for (int i=1 ; i<nr ; i+=2)
	som[i] = 0 ;
    
    double res = 0 ;
    for (int i=0 ; i<nr ; i++)
	res += som[i]*coef[i] ;
	
    res /= pente ;
    
    delete [] deg ;
    delete [] coef ;
    delete [] coloc ;
    delete [] som ;
   
    return res ;

}
*/
}