1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
* Method of class Bin_ns_bh to compute the orbital angular velocity
* {\tt omega}
*
* (see file bin_ns_bh.h for documentation).
*
*/
/*
* Copyright (c) 2003 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char bin_ns_bh_orbit_C[] = "$Header: /cvsroot/Lorene/C++/Source/Bin_ns_bh/bin_ns_bh_orbit.C,v 1.7 2014/10/24 14:10:24 j_novak Exp $" ;
/*
* $Id: bin_ns_bh_orbit.C,v 1.7 2014/10/24 14:10:24 j_novak Exp $
* $Log: bin_ns_bh_orbit.C,v $
* Revision 1.7 2014/10/24 14:10:24 j_novak
* Minor change to prevent weird error from g++-4.8...
*
* Revision 1.6 2014/10/13 08:52:43 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.5 2014/10/06 15:13:02 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.4 2004/06/09 07:26:16 k_taniguchi
* Minor changes.
*
* Revision 1.3 2004/06/09 06:20:11 k_taniguchi
* Set the standard basis for some Cmp.
*
* Revision 1.2 2004/03/25 10:28:58 j_novak
* All LORENE's units are now defined in the namespace Unites (in file unites.h).
*
* Revision 1.1 2003/10/24 16:57:43 k_taniguchi
* Method for the calculation of the orbital angular velocity
*
*
* $Header: /cvsroot/Lorene/C++/Source/Bin_ns_bh/bin_ns_bh_orbit.C,v 1.7 2014/10/24 14:10:24 j_novak Exp $
*
*/
// C headers
#include <cmath>
// Lorene headers
#include "bin_ns_bh.h"
#include "eos.h"
#include "param.h"
#include "utilitaires.h"
#include "unites.h"
namespace Lorene {
double fonc_bin_ns_bh_orbit(double , const Param& ) ;
//*************************************************************************
void Bin_ns_bh::orbit_omega(double fact_omeg_min, double fact_omeg_max) {
using namespace Unites ;
//------------------------------------------------------------------
// Evaluation of various quantities at the center of a neutron star
//------------------------------------------------------------------
double dnulg, asn2, dasn2, ny, dny, npn, dnpn ;
const Map& mp = star.get_mp() ;
const Cmp& loggam = star.get_loggam()() ;
const Cmp& nnn = star.get_nnn()() ;
const Cmp& confpsi = star.get_confpsi()() ;
const Tenseur& shift = star.get_shift() ;
Cmp confpsi_q = pow(confpsi, 4.) ;
confpsi_q.std_base_scal() ;
//-----------------------------------------------------------------
// Calculation of d/dX( nu + ln(Gamma) ) at the center of the star
// ---> dnulg
//-----------------------------------------------------------------
// Factor for the coordinate transformation x --> X :
double factx ;
if (fabs(mp.get_rot_phi()) < 1.e-14) {
factx = 1. ;
}
else {
if (fabs(mp.get_rot_phi() - M_PI) < 1.e-14) {
factx = - 1. ;
}
else {
cout << "Bin_ns_bh::orbit_omega : unknown value of rot_phi !"
<< endl ;
abort() ;
}
}
Cmp tmp = log( nnn ) + loggam ;
tmp.std_base_scal() ;
// ... gradient
dnulg = factx * tmp.dsdx()(0, 0, 0, 0) ;
//------------------------------------------------------------
// Calculation of A^2/N^2 at the center of the star ---> asn2
//------------------------------------------------------------
double nc = nnn(0, 0, 0, 0) ;
double a2c = confpsi_q(0, 0, 0, 0) ;
asn2 = a2c / (nc * nc) ;
if ( star.is_relativistic() ) {
//------------------------------------------------------------------
// Calculation of d/dX(A^2/N^2) at the center of the star ---> dasn
//------------------------------------------------------------------
double da2c = factx * confpsi_q.dsdx()(0, 0, 0, 0) ;
double dnc = factx * nnn.dsdx()(0, 0, 0, 0) ;
dasn2 = ( da2c - 2 * a2c / nc * dnc ) / (nc*nc) ;
//------------------------------------------------------
// Calculation of N^Y at the center of the star ---> ny
//------------------------------------------------------
ny = shift(1)(0, 0, 0, 0) ;
//-----------------------------------------------------------
// Calculation of dN^Y/dX at the center of the star ---> dny
//-----------------------------------------------------------
dny = factx * shift(1).dsdx()(0, 0, 0, 0) ;
//--------------------------------------------
// Calculation of (N^X)^2 + (N^Y)^2 + (N^Z)^2
// at the center of the star ---> npn
//--------------------------------------------
tmp = flat_scalar_prod(shift, shift)() ;
npn = tmp(0, 0, 0, 0) ;
//----------------------------------------------------
// Calculation of d/dX( (N^X)^2 + (N^Y)^2 + (N^Z)^2 )
// at the center of the star ---> dnpn
//----------------------------------------------------
dnpn = factx * tmp.dsdx()(0, 0, 0, 0) ;
} // Finish of the relativistic case
else {
cout << "Bin_ns_bh::orbit_omega : "
<< "It should be the relativistic calculation !" << endl ;
abort() ;
}
cout << "Bin_ns_bh::orbit_omega: central d(nu+log(Gam))/dX : "
<< dnulg << endl ;
cout << "Bin_ns_bh::orbit_omega: central A^2/N^2 : " << asn2 << endl ;
cout << "Bin_ns_bh::orbit_omega: central d(A^2/N^2)/dX : "
<< dasn2 << endl ;
cout << "Bin_ns_bh::orbit_omega: central N^Y : " << ny << endl ;
cout << "Bin_ns_bh::orbit_omega: central dN^Y/dX : " << dny << endl ;
cout << "Bin_ns_bh::orbit_omega: central N.N : " << npn << endl ;
cout << "Bin_ns_bh::orbit_omega: central d(N.N)/dX : "
<< dnpn << endl ;
//------------------------------------------------------
// Start of calculation of the orbital angular velocity
//------------------------------------------------------
int relat = ( star.is_relativistic() ) ? 1 : 0 ;
double ori_x = (star.get_mp()).get_ori_x() ;
Param parf ;
parf.add_int(relat) ;
parf.add_double( ori_x, 0) ;
parf.add_double( dnulg, 1) ;
parf.add_double( asn2, 2) ;
parf.add_double( dasn2, 3) ;
parf.add_double( ny, 4) ;
parf.add_double( dny, 5) ;
parf.add_double( npn, 6) ;
parf.add_double( dnpn, 7) ;
parf.add_double( x_axe, 8) ;
double omega1 = fact_omeg_min * omega ;
double omega2 = fact_omeg_max * omega ;
cout << "Bin_ns_bh::orbit_omega: omega1, omega2 [rad/s] : "
<< omega1 * f_unit << " " << omega2 * f_unit << endl ;
// Search for the various zeros in the interval [omega1,omega2]
// ------------------------------------------------------------
int nsub = 50 ; // total number of subdivisions of the interval
Tbl* azer = 0x0 ;
Tbl* bzer = 0x0 ;
zero_list(fonc_bin_ns_bh_orbit, parf, omega1, omega2, nsub,
azer, bzer) ;
// Search for the zero closest to the previous value of omega
// ----------------------------------------------------------
double omeg_min, omeg_max ;
int nzer = azer->get_taille() ; // number of zeros found by zero_list
cout << "Bin_ns_bh:orbit_omega : " << nzer <<
"zero(s) found in the interval [omega1, omega2]." << endl ;
cout << "omega, omega1, omega2 : " << omega << " " << omega1
<< " " << omega2 << endl ;
cout << "azer : " << *azer << endl ;
cout << "bzer : " << *bzer << endl ;
if (nzer == 0) {
cout << "Bin_ns_bh::orbit_omega: WARNING : "
<< "no zero detected in the interval" << endl
<< " [" << omega1 * f_unit << ", "
<< omega2 * f_unit << "] rad/s !" << endl ;
omeg_min = omega1 ;
omeg_max = omega2 ;
}
else {
double dist_min = fabs(omega2 - omega1) ;
int i_dist_min = -1 ;
for (int i=0; i<nzer; i++) {
// Distance of previous value of omega from the center of the
// interval [azer(i), bzer(i)]
double dist = fabs( omega - 0.5 * ( (*azer)(i) + (*bzer)(i) ) ) ;
if (dist < dist_min) {
dist_min = dist ;
i_dist_min = i ;
}
}
omeg_min = (*azer)(i_dist_min) ;
omeg_max = (*bzer)(i_dist_min) ;
}
delete azer ; // Tbl allocated by zero_list
delete bzer ; //
cout << "Bin_ns_bh:orbit_omega : "
<< "interval selected for the search of the zero : "
<< endl << " [" << omeg_min << ", " << omeg_max << "] = ["
<< omeg_min * f_unit << ", " << omeg_max * f_unit << "] rad/s "
<< endl ;
// Computation of the zero in the selected interval by the secant method
// ---------------------------------------------------------------------
int nitermax = 200 ;
int niter ;
double precis = 1.e-13 ;
omega = zerosec_b(fonc_bin_ns_bh_orbit, parf, omeg_min, omeg_max,
precis, nitermax, niter) ;
cout << "Bin_ns_bh::orbit_omega : "
<< "Number of iterations in zerosec for omega : "
<< niter << endl ;
cout << "Bin_ns_bh::orbit_omega : omega [rad/s] : "
<< omega * f_unit << endl ;
}
//***********************************************************
// Function used for search of the orbital angular velocity
//***********************************************************
double fonc_bin_ns_bh_orbit(double om, const Param& parf) {
int relat = parf.get_int() ;
double xc = parf.get_double(0) ;
double dnulg = parf.get_double(1) ;
double asn2 = parf.get_double(2) ;
double dasn2 = parf.get_double(3) ;
double ny = parf.get_double(4) ;
double dny = parf.get_double(5) ;
double npn = parf.get_double(6) ;
double dnpn = parf.get_double(7) ;
double x_axe = parf.get_double(8) ;
double xx = xc - x_axe ;
double om2 = om*om ;
double dphi_cent ;
if (relat == 1) {
double bpb = om2 * xx*xx - 2*om * ny * xx + npn ;
dphi_cent = ( asn2* ( om* (ny + xx*dny) - om2*xx - 0.5*dnpn )
- 0.5*bpb* dasn2 )
/ ( 1 - asn2 * bpb ) ;
}
else {
cout << "Bin_ns_bh::orbit_omega : "
<< "It should be the relativistic calculation !" << endl ;
abort() ;
}
return dnulg + dphi_cent ;
}
}
|