1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
/*
* Method of class Bin_ns_ncp to set some analytical form to the shift vector.
*
* (see file bin_ns_ncp.h for documentation).
*/
/*
* Copyright (c) 2003 Francois Limousin
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char bin_ns_ncp_anashift_C[] = "$Header: /cvsroot/Lorene/C++/Source/Bin_ns_ncp/bin_ns_ncp_anashift.C,v 1.3 2014/10/13 08:52:43 j_novak Exp $" ;
/*
* $Header: /cvsroot/Lorene/C++/Source/Bin_ns_ncp/bin_ns_ncp_anashift.C,v 1.3 2014/10/13 08:52:43 j_novak Exp $
*
*/
// Headers C
#include "math.h"
// Headers Lorene
#include "bin_ns_ncp.h"
#include "unites.h"
namespace Lorene {
void Bin_ns_ncp::analytical_shift(){
using namespace Unites ;
// Does nothing for a Newtonian star
// ---------------------------------
if ( !star1.is_relativistic() ){
assert( !star2.is_relativistic() ) ;
return ;
}
for (int i=0; i<2; i++) {
// Radius of the star:
double a0 = et[i]->ray_eq() ;
// Mass ratio
double p_mass = et[i]->mass_g() / et[1-i]->mass_g() ;
// G M Omega R / (1+p)
double www = ggrav * et[i]->mass_g() * omega
* separation() / (1. + p_mass) ;
const Map& mp = et[i]->get_mp() ;
Cmp tmp(mp) ;
Cmp tmp_ext(mp) ;
int nzet = et[i]->get_nzet() ;
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
// Computation of w_shift
// ----------------------
et[i]->set_w_shift().set_etat_qcq() ;
// X component
// -----------
et[i]->set_w_shift().set(0) = 0 ;
// Y component
// -----------
// For the incompressible case :
tmp = - 6 * www / a0 * ( 1 - (mp.r)*(mp.r) / (3*a0*a0) ) ;
// For the compressible (n=1) case :
// Mtbl xi = M_PI * mp.r / a0 ;
// Mtbl sinc = sin(xi) / xi ;
// The value of sinc is set to 1 at the origin
// for (int k=0; k<mp.get_mg()->get_np(0); k++) {
// for (int j=0; j<mp.get_mg()->get_nt(0); j++) {
// sinc.set(0, k, j, 0) = 1 ;
// }
// }
// tmp = - 4 * www / a0 * ( 1 + sinc ) ;
tmp.annule(nzet, nzm1) ;
tmp_ext = - 4 * www / mp.r ;
tmp_ext.annule(0, nzet-1) ;
et[i]->set_w_shift().set(1) = tmp + tmp_ext ;
// Z component
// -----------
et[i]->set_w_shift().set(2) = 0 ;
// Sets the standard spectral bases for Cartesian components
et[i]->set_w_shift().set_std_base() ;
// Computation of khi_shift
// ------------------------
tmp = 2 * www / a0 * (mp.y) * ( 1 - 3 * (mp.r)*(mp.r) / (5*a0*a0) ) ;
tmp.annule(nzet, nzm1) ;
tmp_ext = 0.8 * www * a0*a0 * (mp.sint) * (mp.sinp)
/ (mp.r * mp.r) ;
tmp_ext.annule(0, nzet-1) ;
et[i]->set_khi_shift() = tmp + tmp_ext ;
// Sets the standard spectral bases for a scalar field
et[i]->set_khi_shift().set_std_base() ;
}
}
}
|