File: blackhole_killing.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (340 lines) | stat: -rw-r--r-- 8,571 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
 *  Methods of class Black_hole to compute Killing vectors
 *
 *    (see file blackhole.h for documentation).
 *
 */

/*
 *   Copyright (c) 2007 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char blackhole_killing_C[] = "$Header: /cvsroot/Lorene/C++/Source/Black_hole/blackhole_killing.C,v 1.4 2014/10/13 08:52:46 j_novak Exp $" ;

/*
 * $Id: blackhole_killing.C,v 1.4 2014/10/13 08:52:46 j_novak Exp $
 * $Log: blackhole_killing.C,v $
 * Revision 1.4  2014/10/13 08:52:46  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:13:02  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2008/07/02 20:45:07  k_taniguchi
 * A bug removed.
 *
 * Revision 1.1  2008/05/15 19:33:12  k_taniguchi
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Black_hole/blackhole_killing.C,v 1.4 2014/10/13 08:52:46 j_novak Exp $
 *
 */

// C++ headers
//#include <>

// C headers
#include <cmath>

// Lorene headers
#include "blackhole.h"
#include "unites.h"
#include "utilitaires.h"

               //---------------------------------------------//
               //          Killing vectors on the AH          //
               //---------------------------------------------//

namespace Lorene {
Vector Black_hole::killing_vect_bh(const Tbl& xi_i, const double& phi_i,
				   const double& theta_i, const int& nrk_phi,
				   const int& nrk_theta) const {

    using namespace Unites ;

    assert(xi_i.get_ndim() == 1) ;
    assert(xi_i.get_dim(0) == 3) ;

    const Mg3d* mg = mp.get_mg() ;
    int nr = mg->get_nr(1) ;
    int nt = mg->get_nt(1) ;
    int np = mg->get_np(1) ;

    // Vector which is returned to the main code
    // Spherical basis, covariant
    Vector killing(mp, COV, mp.get_bvect_spher()) ;

    if (kerrschild) {

      cout << "Not yet prepared!!!" << endl ;
      abort() ;

    }
    else {  // Isotropic coordinates

        // Solution of the Killing vector on the equator
        // ---------------------------------------------

        double dp = 2. * M_PI / double(np) ;  // Angular step

	// Killing vector on the equator
	// np+1 is for the check of xi(phi=0)= xi(phi=2pi)
	Tbl xi_t(np+1) ;
	xi_t.set_etat_qcq() ;
	Tbl xi_p(np+1) ;
	xi_p.set_etat_qcq() ;
	Tbl xi_l(np+1) ;
	xi_l.set_etat_qcq() ;

	xi_t.set(0) = xi_i(0) ;
	xi_p.set(0) = xi_i(1) ;
	xi_l.set(0) = xi_i(2) ;

	Tbl xi(3) ;
	xi.set_etat_qcq() ;

	Tbl xi_ini(3) ;
	xi_ini.set_etat_qcq() ;
	xi_ini.set(0) = xi_i(0) ;
	xi_ini.set(1) = xi_i(1) ;
	xi_ini.set(2) = xi_i(2) ;

	double pp_0 = phi_i ;  // azimuthal angle phi

	for (int i=1; i<np+1; i++) {

	    xi = runge_kutta_phi_bh(xi_ini, pp_0, nrk_phi) ;

	    xi_t.set(i) = xi(0) ;
	    xi_p.set(i) = xi(1) ;
	    xi_l.set(i) = xi(2) ;

	    // New data for the next step
	    //  -------------------------
	    pp_0 += dp ;  // New angle
	    xi_ini = xi ;

	}

	/*
	for (int i=0; i<np+1; i++) {

	  cout << "xi_t    xi_p    xi_l" << endl ;
	  cout << xi_t(i) << "  " << xi_p(i) << "  " << xi_l(i) << endl ;

	}
	arrete() ;
	*/

	// Normalization of the Killing vector
	// -----------------------------------

	// Initialization of the Killing vector to the phi direction
	Scalar xi_phi(mp) ;
	xi_phi = 0.5 ;  // If we use "1." for the initialization value,
	                // the state flag becomes "ETATUN" which does not
	                // work for "set_grid_point".

	for (int k=0; k<np; k++) {
	  xi_phi.set_grid_point(0, k, nt-1, nr-1) = xi_p(k) ;
	  xi_phi.set_grid_point(1, k, nt-1, 0) = xi_p(k) ;
	}
	xi_phi.std_spectral_base() ;
	/*
	for (int l=0; l<2; l++) {
	  for (int k=0; k<np; k++) {
	    for (int j=0; j<nt; j++) {
	      for (int i=0; i<nr; i++) {
		cout << "(l,k,j,i)=" << l << "," << k << "," << j
		     << "," << i << ": "
		     << xi_phi.val_grid_point(l,k,j,i) << endl ;
	      }
	      arrete() ;
	    }
	    arrete() ;
	  }
	  arrete() ;
	}
	*/

	// Normalization of the Killing vector
	Scalar rr(mp) ;
	rr = mp.r ;
	rr.std_spectral_base() ;

	Scalar st(mp) ;
	st = mp.sint ;
	st.std_spectral_base() ;

	Scalar source_phi(mp) ;
	source_phi = pow(confo, 2.) * rr * st / xi_phi ;
	source_phi.std_spectral_base() ;

	double rah = rad_ah() ;

	int nn = 1000 ;
	double hh = 2. * M_PI / double(nn) ;
	double integ = 0. ;

	int mm ;
	double t1, t2, t3, t4, t5 ;

	// Boole's Rule (Newton-Cotes Integral) for integration
	// ----------------------------------------------------

	assert(nn%4 == 0) ;
	mm = nn/4 ;

	for (int i=0; i<mm; i++) {

	    t1 = hh * double(4*i) ;
	    t2 = hh * double(4*i+1) ;
	    t3 = hh * double(4*i+2) ;
	    t4 = hh * double(4*i+3) ;
	    t5 = hh * double(4*i+4) ;

	    integ += (hh/45.) * (14.*source_phi.val_point(rah,M_PI/2.,t1)
				 + 64.*source_phi.val_point(rah,M_PI/2.,t2)
				 + 24.*source_phi.val_point(rah,M_PI/2.,t3)
				 + 64.*source_phi.val_point(rah,M_PI/2.,t4)
				 + 14.*source_phi.val_point(rah,M_PI/2.,t5)
				 ) ;

	}

	cout << "Black_hole:: t_f = " << integ << endl ;
	double ratio = 0.5 * integ / M_PI ;

	cout << "Black_hole:: t_f / 2M_PI = " << ratio << endl ;

	for (int k=0; k<np; k++) {
	  xi_p.set(k) = xi_phi.val_grid_point(1, k, nt-1, 0) * ratio ;
	}

	/*
	for (int k=0; k<np; k++) {
	  cout << "Normalized xi_p" << "(" << k << ") :" << xi_p(k) << endl ;
	}
	*/

        // Solution of the Killing vector to the pole angle
        // ------------------------------------------------

	double dt = 0.5 * M_PI / double(nt-1) ;  // Angular step

	// Killing vector to the polar angle
	Tbl xi_th(nt, np) ;
	xi_th.set_etat_qcq() ;
	Tbl xi_ph(nt, np) ;
	xi_ph.set_etat_qcq() ;
	Tbl xi_ll(nt, np) ;
	xi_ll.set_etat_qcq() ;

	// Values on the equator
	for (int i=0; i<np; i++) {

	    xi_th.set(nt-1, i) = xi_t(i) ;
	    xi_ph.set(nt-1, i) = xi_p(i) ;
	    xi_ll.set(nt-1, i) = xi_l(i) ;

	}

	for (int i=0; i<np; i++) {

	    // Value at theta=pi/2, phi=phi_i
	    xi_ini.set(0) = xi_t(i) ;
	    xi_ini.set(1) = xi_p(i) ;
	    xi_ini.set(2) = xi_l(i) ;

	    double pp = double(i) * dp ;
	    double tt_0 = theta_i ;  // polar angle theta

	    for (int j=1; j<nt; j++) {

	        xi = runge_kutta_theta_bh(xi_ini, tt_0, pp, nrk_theta) ;

		xi_th.set(nt-1-j, i) = xi(0) ;
		xi_ph.set(nt-1-j, i) = xi(1) ;
		xi_ll.set(nt-1-j, i) = xi(2) ;

		// New data for the nxt step
		// -------------------------
		tt_0 -= dt ;  // New angle
		xi_ini = xi ;

	    }  // End of the loop to the polar direction

	}  // End of the loop to the azimuhtal direction


	// Construction of the Killing vector
	// ----------------------------------

	// Definition of the vector is at the top of this code
	killing.set_etat_qcq() ;
	killing.set(1) = 0. ;  // r component
	killing.set(2) = 0.5 ;  // initialization of the theta component
	killing.set(3) = 0.5 ;  // initialization of the phi component

	for (int l=0; l<2; l++) {
	  for (int i=0; i<nr; i++) {
	    for (int j=0; j<nt; j++) {
	      for (int k=0; k<np; k++) {
		(killing.set(2)).set_grid_point(l, k, j, i) = xi_th(j, k) ;
		(killing.set(3)).set_grid_point(l, k, j, i) = xi_ph(j, k) ;
	      }
	    }
	  }
	}
	killing.std_spectral_base() ;

	// Check the normalization
	// -----------------------

	double check_norm = 0. ;
	source_phi = pow(confo, 2.) * rr * st / killing(3) ;
	source_phi.std_spectral_base() ;

	for (int i=0; i<mm; i++) {

	    t1 = hh * double(4*i) ;
	    t2 = hh * double(4*i+1) ;
	    t3 = hh * double(4*i+2) ;
	    t4 = hh * double(4*i+3) ;
	    t5 = hh * double(4*i+4) ;

	    check_norm += (hh/45.) *
	      ( 14.*source_phi.val_point(rah,M_PI/4.,t1)
		+ 64.*source_phi.val_point(rah,M_PI/4.,t2)
		+ 24.*source_phi.val_point(rah,M_PI/4.,t3)
		+ 64.*source_phi.val_point(rah,M_PI/4.,t4)
		+ 14.*source_phi.val_point(rah,M_PI/4.,t5) ) ;

	}

	cout << "Black_hole:: t_f for M_PI/4 = " << check_norm / M_PI
	     << " M_PI" << endl ;

    }  // End of the loop for isotropic coordinates

    return killing ;

}
}