1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
/*
* Method of class Etoile_bin to compute an equilibrium configuration
* by regularizing source.
*
* (see file etoile.h for documentation).
*
*/
/*
* Copyright (c) 2000-2001 Eric Gourgoulhon
* Copyright (c) 2000-2001 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char et_bin_equil_regu_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_equil_regu.C,v 1.8 2014/10/13 08:52:55 j_novak Exp $" ;
/*
* $Id: et_bin_equil_regu.C,v 1.8 2014/10/13 08:52:55 j_novak Exp $
* $Log: et_bin_equil_regu.C,v $
* Revision 1.8 2014/10/13 08:52:55 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.7 2014/10/06 15:13:08 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.6 2009/06/15 09:26:57 k_taniguchi
* Improved the rescaling of the domains.
*
* Revision 1.5 2004/03/25 10:29:03 j_novak
* All LORENE's units are now defined in the namespace Unites (in file unites.h).
*
* Revision 1.4 2003/09/01 06:48:08 k_taniguchi
* Change of the domain which should be resized.
*
* Revision 1.3 2003/08/31 05:35:38 k_taniguchi
* Addition of the specification of the domain
* which is resized.
*
* Revision 1.2 2002/12/11 12:51:26 k_taniguchi
* Change the multiplication "*" to "%"
* and flat_scalar_prod to flat_scalar_prod_desal.
*
* Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
* LORENE
*
* Revision 2.17 2001/08/07 09:49:00 keisuke
* Change of the method to set the longest radius of a star
* on the first domain.
* Addition of a new argument in Etoile_bin::equil_regular : Tbl fact.
*
* Revision 2.16 2001/06/22 08:54:53 keisuke
* Set the inner values of the second domain of ent
* by using the outer ones of the first domain.
*
* Revision 2.15 2001/05/17 12:22:26 keisuke
* Change of the method to calculate chi from setting position in map
* to val_point.
*
* Revision 2.14 2001/02/07 09:47:28 eric
* unsgam1 est desormais donne par Eos::der_nbar_ent (cas newtonien)
* ou Eos::der_ener_ent (cas relativiste).
*
* Revision 2.13 2001/01/16 17:02:32 keisuke
* *** empty log message ***
*
* Revision 2.12 2001/01/16 16:58:08 keisuke
* Change the method to set the values on the surface.
*
* Revision 2.11 2001/01/10 16:45:34 keisuke
* Set the inner values of the second domain of logn_auto
* by using the outer ones of the first domain.
*
* Revision 2.10 2000/12/20 10:33:14 eric
* Changement important : nz_search = nzet ---> nz_search = nzet + 1
*
* Revision 2.9 2000/10/25 14:01:03 keisuke
* Modif de Map_et::adapt: on y rentre desormais avec nz_search
* (dans le cas present nz_search = nzet).
*
* Revision 2.8 2000/10/06 15:29:01 keisuke
* Change poisson_vect into poisson_vect_regu.
*
* Revision 2.7 2000/09/25 15:01:10 keisuke
* Suppress "int" from the declaration of k_div.
*
* Revision 2.6 2000/09/22 15:51:39 keisuke
* d_logn_auto est desormais calcule en dehors (dans update_metric).
*
* Revision 2.5 2000/09/13 09:50:33 keisuke
* Minor change on change_triad.
*
* Revision 2.4 2000/09/08 15:57:31 keisuke
* Change the basis of d_logn_auto_div from the spherical coordinate
* to the Cartesian one with respect to ref_triad.
*
* Revision 2.3 2000/09/07 15:47:19 keisuke
* Minor change.
*
* Revision 2.2 2000/09/07 15:43:41 keisuke
* Add a new argument in poisson_regular and suppress logn_auto_total.
*
* Revision 2.1 2000/08/29 14:01:43 keisuke
* Modify the arguments of poisson_regular.
*
* Revision 2.0 2000/08/29 11:39:02 eric
* Version provisoire.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_equil_regu.C,v 1.8 2014/10/13 08:52:55 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "etoile.h"
#include "param.h"
#include "eos.h"
#include "utilitaires.h"
#include "unites.h"
namespace Lorene {
//********************************************************************
void Etoile_bin::equil_regular(double ent_c, int mermax, int mermax_poisson,
double relax_poisson, int mermax_potvit,
double relax_potvit, double thres_adapt,
const Tbl& fact_resize, Tbl& diff) {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
// Initializations
// ---------------
k_div = 2 ; // Regularity parameter for poisson_regular
const Mg3d* mg = mp.get_mg() ;
int nz = mg->get_nzone() ; // total number of domains
// The following is required to initialize mp_prev as a Map_et:
Map_et& mp_et = dynamic_cast<Map_et&>(mp) ;
// Domain and radial indices of points at the surface of the star:
int l_b = nzet - 1 ;
int i_b = mg->get_nr(l_b) - 1 ;
int k_b ;
int j_b ;
// Value of the enthalpy defining the surface of the star
double ent_b = 0 ;
// Error indicators
// ----------------
double& diff_ent = diff.set(0) ;
double& diff_vel_pot = diff.set(1) ;
double& diff_logn = diff.set(2) ;
double& diff_beta = diff.set(3) ;
double& diff_shift_x = diff.set(4) ;
double& diff_shift_y = diff.set(5) ;
double& diff_shift_z = diff.set(6) ;
// Parameters for the function Map_et::adapt
// -----------------------------------------
Param par_adapt ;
int nitermax = 100 ;
int niter ;
int adapt_flag = 1 ; // 1 = performs the full computation,
// 0 = performs only the rescaling by
// the factor alpha_r
//## int nz_search = nzet + 1 ; // Number of domains for searching the enthalpy
int nz_search = nzet ; // Number of domains for searching the enthalpy
// isosurfaces
double precis_secant = 1.e-14 ;
double alpha_r ;
double reg_map = 1. ; // 1 = regular mapping, 0 = contracting mapping
Tbl ent_limit(nz) ;
par_adapt.add_int(nitermax, 0) ; // maximum number of iterations to
// locate zeros by the secant method
par_adapt.add_int(nzet, 1) ; // number of domains where the adjustment
// to the isosurfaces of ent is to be
// performed
par_adapt.add_int(nz_search, 2) ; // number of domains to search for
// the enthalpy isosurface
par_adapt.add_int(adapt_flag, 3) ; // 1 = performs the full computation,
// 0 = performs only the rescaling by
// the factor alpha_r
par_adapt.add_int(j_b, 4) ; // theta index of the collocation point
// (theta_*, phi_*)
par_adapt.add_int(k_b, 5) ; // theta index of the collocation point
// (theta_*, phi_*)
par_adapt.add_int_mod(niter, 0) ; // number of iterations actually
// used in the secant method
par_adapt.add_double(precis_secant, 0) ; // required absolute precision in
// the determination of zeros by
// the secant method
par_adapt.add_double(reg_map, 1) ; // 1. = regular mapping,
// 0 = contracting mapping
par_adapt.add_double(alpha_r, 2) ; // factor by which all the radial
// distances will be multiplied
par_adapt.add_tbl(ent_limit, 0) ; // array of values of the field ent
// to define the isosurfaces.
// Parameters for the function Map_et::poisson_regular for logn_auto
// -----------------------------------------------------------------
double precis_poisson = 1.e-16 ;
Param par_poisson1 ;
par_poisson1.add_int(mermax_poisson, 0) ; // maximum number of iterations
par_poisson1.add_double(relax_poisson, 0) ; // relaxation parameter
par_poisson1.add_double(precis_poisson, 1) ; // required precision
par_poisson1.add_int_mod(niter, 0) ; // number of iterations actually
// used
par_poisson1.add_cmp_mod( ssjm1_logn ) ;
// Parameters for the function Map_et::poisson for beta_auto
// ---------------------------------------------------------
Param par_poisson2 ;
par_poisson2.add_int(mermax_poisson, 0) ; // maximum number of iterations
par_poisson2.add_double(relax_poisson, 0) ; // relaxation parameter
par_poisson2.add_double(precis_poisson, 1) ; // required precision
par_poisson2.add_int_mod(niter, 0) ; // number of iterations actually
// used
par_poisson2.add_cmp_mod( ssjm1_beta ) ;
// Parameters for the function Tenseur::poisson_vect_regu
// ------------------------------------------------------
Param par_poisson_vect ;
par_poisson_vect.add_int(mermax_poisson, 0) ; // maximum number of
// iterations
par_poisson_vect.add_double(relax_poisson, 0) ; // relaxation parameter
par_poisson_vect.add_double(precis_poisson, 1) ; // required precision
par_poisson_vect.add_cmp_mod( ssjm1_khi ) ;
par_poisson_vect.add_tenseur_mod( ssjm1_wshift ) ;
par_poisson_vect.add_int_mod(niter, 0) ;
// External potential
// ------------------
Tenseur pot_ext = logn_comp + pot_centri + loggam ;
//##
// des_coupe_z(pot_ext(), 0., 1, "pot_ext", &(ent()) ) ;
//##
Tenseur ent_jm1 = ent ; // Enthalpy at previous step
Tenseur source(mp) ; // source term in the equation for logn_auto
// and beta_auto
Tenseur source_shift(mp, 1, CON, ref_triad) ; // source term in the
// equation for shift_auto
Cmp source_regu(mp) ;
Cmp source_div(mp) ;
//=========================================================================
// Start of iteration
//=========================================================================
for(int mer=0 ; mer<mermax ; mer++ ) {
cout << "-----------------------------------------------" << endl ;
cout << "step: " << mer << endl ;
cout << "diff_ent = " << diff_ent << endl ;
//-----------------------------------------------------
// Resolution of the elliptic equation for the velocity
// scalar potential
//-----------------------------------------------------
if (irrotational) {
diff_vel_pot = velocity_potential(mermax_potvit, precis_poisson,
relax_potvit) ;
}
//-----------------------------------------------------
// Computation of the new radial scale
//-----------------------------------------------------
// alpha_r (r = alpha_r r') is determined so that the enthalpy
// takes the requested value ent_b at the stellar surface
// Values at the center of the star:
double logn_auto_c = logn_auto()(0, 0, 0, 0) ;
double pot_ext_c = pot_ext()(0, 0, 0, 0) ;
// Search for the reference point (theta_*, phi_*) [notation of
// Bonazzola, Gourgoulhon & Marck PRD 58, 104020 (1998)]
// at the surface of the star
// ------------------------------------------------------------
double alpha_r2 = 0 ;
for (int k=0; k<mg->get_np(l_b); k++) {
for (int j=0; j<mg->get_nt(l_b); j++) {
double pot_ext_b = pot_ext()(l_b, k, j, i_b) ;
double logn_auto_b = logn_auto()(l_b, k, j, i_b) ;
double alpha_r2_jk = ( ent_c - ent_b + pot_ext_c - pot_ext_b) /
( logn_auto_b - logn_auto_c ) ;
// cout << "k, j, alpha_r2_jk : " << k << " " << j << " "
// << alpha_r2_jk << endl ;
if (alpha_r2_jk > alpha_r2) {
alpha_r2 = alpha_r2_jk ;
k_b = k ;
j_b = j ;
}
}
}
alpha_r = sqrt(alpha_r2) ;
cout << "k_b, j_b, alpha_r: " << k_b << " " << j_b << " "
<< alpha_r << endl ;
// New value of logn_auto
// ----------------------
logn_auto = alpha_r2 * logn_auto ;
logn_auto_regu = alpha_r2 * logn_auto_regu ;
logn_auto_c = logn_auto()(0, 0, 0, 0) ;
//------------------------------------------------------------
// Change the values of the inner points of the second domain
// by those of the outer points of the first domain
//------------------------------------------------------------
(logn_auto().va).smooth(nzet, (logn_auto.set()).va) ;
//--------------------
// First integral --> enthalpy in all space
//--------------------
ent = (ent_c + logn_auto_c + pot_ext_c) - logn_auto - pot_ext ;
(ent().va).smooth(nzet, (ent.set()).va) ;
//----------------------------------------------------
// Adaptation of the mapping to the new enthalpy field
//----------------------------------------------------
// Shall the adaptation be performed (cusp) ?
// ------------------------------------------
double dent_eq = ent().dsdr().val_point(ray_eq(),M_PI/2.,0.) ;
double dent_pole = ent().dsdr().val_point(ray_pole(),0.,0.) ;
double rap_dent = fabs( dent_eq / dent_pole ) ;
cout << "| dH/dr_eq / dH/dr_pole | = " << rap_dent << endl ;
if ( rap_dent < thres_adapt ) {
adapt_flag = 0 ; // No adaptation of the mapping
cout << "******* FROZEN MAPPING *********" << endl ;
}
else{
adapt_flag = 1 ; // The adaptation of the mapping is to be
// performed
}
ent_limit.set_etat_qcq() ;
for (int l=0; l<nzet; l++) { // loop on domains inside the star
ent_limit.set(l) = ent()(l, k_b, j_b, i_b) ;
}
ent_limit.set(nzet-1) = ent_b ;
Map_et mp_prev = mp_et ;
//##
// des_coupe_z(ent(), 0., 1, "ent before adapt", &(ent()) ) ;
//##
mp.adapt(ent(), par_adapt) ;
// Readjustment of the external boundary of domain l=nzet
// to keep a fixed ratio with respect to star's surface
double rr_in_1 = mp.val_r(nzet, -1., M_PI/2., 0.) ;
// Resizes the outer boundary of the shell including the comp. NS
double rr_out_nm2 = mp.val_r(nz-2, 1., M_PI/2., 0.) ;
mp.resize(nz-2, rr_in_1/rr_out_nm2 * fact_resize(1)) ;
// Resizes the inner boundary of the shell including the comp. NS
double rr_out_nm3 = mp.val_r(nz-3, 1., M_PI/2., 0.) ;
mp.resize(nz-3, rr_in_1/rr_out_nm3 * fact_resize(0)) ;
if (nz > nzet+3) {
// Resize of the domain from 1(nzet) to N-4
double rr_out_nm3_new = mp.val_r(nz-3, 1., M_PI/2., 0.) ;
for (int i=nzet-1; i<nz-4; i++) {
double rr_out_i = mp.val_r(i, 1., M_PI/2., 0.) ;
double rr_mid = rr_out_i
+ (rr_out_nm3_new - rr_out_i) / double(nz - 3 - i) ;
double rr_2timesi = 2. * rr_out_i ;
if (rr_2timesi < rr_mid) {
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr_2timesi / rr_out_ip1) ;
}
else {
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr_mid / rr_out_ip1) ;
} // End of else
} // End of i loop
} // End of (nz > nzet+3) loop
//##
// des_coupe_z(ent(), 0., 1, "ent after adapt", &(ent()) ) ;
//##
//----------------------------------------------------
// Computation of the enthalpy at the new grid points
//----------------------------------------------------
mp_prev.homothetie(alpha_r) ;
mp.reevaluate_symy(&mp_prev, nzet+1, ent.set()) ;
// des_coupe_z(ent(), 0., 1, "ent after reevaluate", &(ent()) ) ;
double ent_s_max = -1 ;
int k_s_max = -1 ;
int j_s_max = -1 ;
for (int k=0; k<mg->get_np(l_b); k++) {
for (int j=0; j<mg->get_nt(l_b); j++) {
double xx = fabs( ent()(l_b, k, j, i_b) ) ;
if (xx > ent_s_max) {
ent_s_max = xx ;
k_s_max = k ;
j_s_max = j ;
}
}
}
cout << "Max. abs(enthalpy) at the boundary between domains nzet-1"
<< " and nzet : " << endl ;
cout << " " << ent_s_max << " reached for k = " << k_s_max <<
" and j = " << j_s_max << endl ;
//----------------------------------------------------
// Equation of state
//----------------------------------------------------
equation_of_state() ; // computes new values for nbar (n), ener (e)
// and press (p) from the new ent (H)
//---------------------------------------------------------
// Matter source terms in the gravitational field equations
//---------------------------------------------------------
hydro_euler() ; // computes new values for ener_euler (E),
// s_euler (S) and u_euler (U^i)
//--------------------------------------------------------
// Poisson equation for logn_auto (nu_auto)
//--------------------------------------------------------
// Source
// ------
double unsgam1 ; // effective power of H in the source
// close to the surface
if (relativistic) {
source = qpig * a_car % (ener_euler + s_euler)
+ akcar_auto + akcar_comp
- flat_scalar_prod_desal(d_logn_auto,
d_beta_auto + d_beta_comp) ;
// 1/(gam-1) = dln(e)/dln(H) close to the surface :
unsgam1 = eos.der_ener_ent_p(ent_b + 1e-10*(ent_c-ent_b)) ;
}
else {
source = qpig * nbar ;
// 1/(gam-1) = dln(n)/dln(H) close to the surface :
unsgam1 = eos.der_nbar_ent_p(ent_b + 1e-10*(ent_c-ent_b)) ;
}
source.set_std_base() ;
// Resolution of the Poisson equation
// ----------------------------------
logn_auto_regu.set_etat_qcq() ;
logn_auto_div.set_etat_qcq() ;
d_logn_auto_div.set_etat_qcq() ;
source_regu.std_base_scal() ;
source_div.std_base_scal() ;
source().poisson_regular(k_div, nzet, unsgam1, par_poisson1,
logn_auto.set(), logn_auto_regu.set(),
logn_auto_div.set(),
d_logn_auto_div,
source_regu, source_div) ;
// Check: has the Poisson equation been correctly solved ?
// -----------------------------------------------------
Tbl tdiff_logn = diffrel(logn_auto().laplacien(), source()) ;
cout <<
"Relative error in the resolution of the equation for logn_auto : "
<< endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_logn(l) << " " ;
}
cout << endl ;
diff_logn = max(abs(tdiff_logn)) ;
if (relativistic) {
//--------------------------------------------------------
// Poisson equation for beta_auto
//--------------------------------------------------------
// Source
// ------
source = qpig * a_car % s_euler
+ .75 * ( akcar_auto + akcar_comp )
- .5 * flat_scalar_prod_desal(d_logn_auto,
d_logn_auto + d_logn_comp)
- .5 * flat_scalar_prod_desal(d_beta_auto,
d_beta_auto + d_beta_comp) ;
source.set_std_base() ;
// Resolution of the Poisson equation
// ----------------------------------
source().poisson(par_poisson2, beta_auto.set()) ;
// Check: has the Poisson equation been correctly solved ?
// -----------------------------------------------------
Tbl tdiff_beta = diffrel(beta_auto().laplacien(), source()) ;
cout <<
"Relative error in the resolution of the equation for beta_auto : "
<< endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_beta(l) << " " ;
}
cout << endl ;
diff_beta = max(abs(tdiff_beta)) ;
//--------------------------------------------------------
// Vector Poisson equation for shift_auto
//--------------------------------------------------------
// Source
// ------
Tenseur vtmp = 6. * ( d_beta_auto + d_beta_comp )
-8. * ( d_logn_auto + d_logn_comp ) ;
source_shift = (-4.*qpig) * nnn % a_car % (ener_euler + press)
% u_euler
+ nnn % flat_scalar_prod_desal(tkij_auto, vtmp) ;
source_shift.set_std_base() ;
// Resolution of the Poisson equation
// ----------------------------------
// Filter for the source of shift vector
for (int i=0; i<3; i++) {
if (source_shift(i).get_etat() != ETATZERO)
source_shift.set(i).filtre(4) ;
}
// For Tenseur::poisson_vect_regu,
// the triad must be the mapping triad,
// not the reference one:
source_shift.change_triad( mp.get_bvect_cart() ) ;
for (int i=0; i<3; i++) {
if(source_shift(i).dz_nonzero()) {
assert( source_shift(i).get_dzpuis() == 4 ) ;
}
else{
(source_shift.set(i)).set_dzpuis(4) ;
}
}
//##
// source_shift.dec2_dzpuis() ; // dzpuis 4 -> 2
double lambda_shift = double(1) / double(3) ;
source_shift.poisson_vect_regu(k_div, nzet, unsgam1,
lambda_shift, par_poisson_vect,
shift_auto, w_shift, khi_shift) ;
// Check: has the equation for shift_auto been correctly solved ?
// --------------------------------------------------------------
// Divergence of shift_auto :
Tenseur divn = contract(shift_auto.gradient(), 0, 1) ;
divn.dec2_dzpuis() ; // dzpuis 2 -> 0
// Grad(div) :
Tenseur graddivn = divn.gradient() ;
graddivn.inc2_dzpuis() ; // dzpuis 2 -> 4
// Full operator :
Tenseur lap_shift(mp, 1, CON, mp.get_bvect_cart() ) ;
lap_shift.set_etat_qcq() ;
for (int i=0; i<3; i++) {
lap_shift.set(i) = shift_auto(i).laplacien()
+ lambda_shift * graddivn(i) ;
}
Tbl tdiff_shift_x = diffrel(lap_shift(0), source_shift(0)) ;
Tbl tdiff_shift_y = diffrel(lap_shift(1), source_shift(1)) ;
Tbl tdiff_shift_z = diffrel(lap_shift(2), source_shift(2)) ;
cout <<
"Relative error in the resolution of the equation "
"for shift_auto : "
<< endl ;
cout << "x component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_x(l) << " " ;
}
cout << endl ;
cout << "y component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_y(l) << " " ;
}
cout << endl ;
cout << "z component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_z(l) << " " ;
}
cout << endl ;
diff_shift_x = max(abs(tdiff_shift_x)) ;
diff_shift_y = max(abs(tdiff_shift_y)) ;
diff_shift_z = max(abs(tdiff_shift_z)) ;
// Final result
// ------------
// The output of Tenseur::poisson_vect is on the mapping triad,
// it should therefore be transformed to components on the
// reference triad :
shift_auto.change_triad( ref_triad ) ;
} // End of relativistic equations
//-------------------------------------------------
// Relative change in enthalpy
//-------------------------------------------------
Tbl diff_ent_tbl = diffrel( ent(), ent_jm1() ) ;
diff_ent = diff_ent_tbl(0) ;
for (int l=1; l<nzet; l++) {
diff_ent += diff_ent_tbl(l) ;
}
diff_ent /= nzet ;
ent_jm1 = ent ;
} // End of main loop
//=========================================================================
// End of iteration
//=========================================================================
}
}
|