1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*
* Methods of the class Etoile_bin for computing hydro quantities
*
* (see file etoile.h for documentation)
*/
/*
* Copyright (c) 2000-2001 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char et_bin_hydro_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_hydro.C,v 1.6 2014/10/13 08:52:55 j_novak Exp $" ;
/*
* $Id: et_bin_hydro.C,v 1.6 2014/10/13 08:52:55 j_novak Exp $
* $Log: et_bin_hydro.C,v $
* Revision 1.6 2014/10/13 08:52:55 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.5 2005/08/29 15:10:16 p_grandclement
* Addition of things needed :
* 1) For BBH with different masses
* 2) Provisory files for the mixted binaries (Bh and NS) : THIS IS NOT
* WORKING YET !!!
*
* Revision 1.4 2003/03/03 19:46:09 f_limousin
* Set standard bases for s_euler.
*
* Revision 1.3 2003/01/17 13:34:56 f_limousin
* Replace A^2*flat_scalar_prod by sprod
*
* Revision 1.2 2002/12/10 15:29:29 k_taniguchi
* Change the multiplication "*" to "%"
* and flat_scalar_prod to flat_scalar_prod_desal.
*
* Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
* LORENE
*
* Revision 2.11 2000/12/22 13:10:32 eric
* Modif des annulations en dehors de l'etoile.
*
* Revision 2.10 2000/03/29 11:47:53 eric
* Suppression affichage.
*
* Revision 2.9 2000/03/01 16:12:09 eric
* Appel de set_std_base sur u_euler dans le cas irrotationnel.
*
* Revision 2.8 2000/02/24 09:34:10 keisuke
* Ajout de l'appel a set_std_base() sur wit_w.
*
* Revision 2.7 2000/02/21 13:59:09 eric
* Appel de set_dzpuis(0) sur loggam.
*
* Revision 2.6 2000/02/21 08:43:17 keisuke
* Ajout de l'appel a set_std_base() sur loggam.
*
* Revision 2.5 2000/02/17 14:42:45 eric
* Ajout de l'appel a set_std_base() sur gam_euler.
*
* Revision 2.4 2000/02/14 11:06:15 eric
* Suppression de l'appel a annule(nzet.nzm1) sur gam_euler dans le cas en
* corotation.
* Ajout de l'appel a annule(nzet,nzm1) sur wit_w.
*
* Revision 2.3 2000/02/12 18:36:23 eric
* Appel de set_std_base sur loggam.
*
* Revision 2.2 2000/02/08 19:29:03 eric
* Calcul sur les tenseurs.
* wit_w est calcule.
*
* Revision 2.1 2000/02/04 16:37:28 eric
* Premiere version implementee (non testee !)/
*
* Revision 2.0 2000/01/31 15:57:30 eric
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_hydro.C,v 1.6 2014/10/13 08:52:55 j_novak Exp $
*
*/
// Headers C
// Headers Lorene
#include "etoile.h"
namespace Lorene {
void Etoile_bin::hydro_euler(){
int nz = mp.get_mg()->get_nzone() ;
int nzm1 = nz - 1 ;
//----------------------------------
// Specific relativistic enthalpy ---> hhh
//----------------------------------
Tenseur hhh = exp(unsurc2 * ent) ; // = 1 at the Newtonian limit
hhh.set_std_base() ;
//---------------------------------------------------
// Lorentz factor between the co-orbiting ---> gam0
// observer and the Eulerian one
// See Eq (23) and (24) from Gourgoulhon et al. (2001)
//---------------------------------------------------
Tenseur gam0 = 1/sqrt(1-unsurc2*sprod(bsn,bsn)) ;
gam0.set_std_base() ;
//------------------------------------------
// Lorentz factor and 3-velocity of the fluid
// with respect to the Eulerian observer
//------------------------------------------
if (irrotational) {
//## cout << "Etoile_bin::hydro_euler : ### warning : " << endl ;
// cout << " d_psi.d_psi would be better computed in spher. coord. !"
//## << endl ;
d_psi.set_std_base() ;
// See Eq (32) from Gourgoulhon et al. (2001)
gam_euler = sqrt( 1 + unsurc2 * sprod(d_psi, d_psi)
/ (hhh%hhh) ) ;
gam_euler.set_std_base() ; // sets the standard spectral bases for
// a scalar field
// See Eq (31) from Gourgoulhon et al. (2001)
Tenseur vtmp = d_psi / ( hhh % gam_euler % a_car ) ;
// The assignment of u_euler is performed component by component
// because u_euler is contravariant and d_psi is covariant
if (vtmp.get_etat() == ETATZERO) {
u_euler.set_etat_zero() ;
}
else{
assert(vtmp.get_etat() == ETATQCQ) ;
u_euler.set_etat_qcq() ;
for (int i=0; i<3; i++) {
u_euler.set(i) = vtmp(i) ;
}
u_euler.set_triad( *(vtmp.get_triad()) ) ;
}
u_euler.set_std_base() ;
}
else { // Rigid rotation
// --------------
gam_euler = gam0 ;
gam_euler.set_std_base() ; // sets the standard spectral bases for
// a scalar field
u_euler = -bsn ;
}
//------------------------------------
// Energy density E with respect to the Eulerian observer
// See Eq (53) from Gourgoulhon et al. (2001)
//------------------------------------
ener_euler = gam_euler % gam_euler % ( ener + press ) - press ;
//------------------------------------
// Trace of the stress tensor with respect to the Eulerian observer
// See Eq (54) from Gourgoulhon et al. (2001)
//------------------------------------
//Tenseur tmp00 = sprod(u_euler, u_euler) ;
//cout << hex << u_euler(0).va.base.b[0] << endl ;
//cout << hex << u_euler(1).va.base.b[0] << endl ;
//cout << hex << u_euler(2).va.base.b[0] << endl ;
//cout << hex << tmp00().va.base.b[0] << endl ;
s_euler = 3 * press + ( ener_euler + press ) *
sprod(u_euler, u_euler) ;
s_euler.set_std_base() ;
//-------------------------------------------
// Lorentz factor between the fluid and ---> gam
// co-orbiting observers
// See Eq (58) from Gourgoulhon et al. (2001)
//--------------------------------------------
Tenseur tmp = ( 1+unsurc2*sprod(bsn,u_euler) ) ;
tmp.set_std_base() ;
Tenseur gam = gam0 % gam_euler % tmp ;
//-------------------------------------------
// Spatial projection of the fluid 3-velocity
// with respect to the co-orbiting observer
//--------------------------------------------
wit_w = gam_euler / gam % u_euler + gam0 % bsn ;
wit_w.set_std_base() ; // set the bases for spectral expansions
wit_w.annule(nzm1) ; // zero in the ZEC
//-------------------------------------------
// Logarithm of the Lorentz factor between
// the fluid and co-orbiting observers
//--------------------------------------------
if (relativistic) {
loggam = log( gam ) ;
loggam.set_std_base() ; // set the bases for spectral expansions
}
else {
loggam = 0.5 * flat_scalar_prod_desal(wit_w, wit_w) ;
loggam.set_std_base() ; // set the bases for spectral expansions
//### Forcage a zero des termes en sin(m*phi) :
// loggam.coef() ;
// int np = mgrille->np[0] ;
// int nt = mgrille->nt[0] ;
// int nr = mgrille->nr[0] ;
// int ntnr = nt * nr ;
// for (int k = 1; k < np+2; k+=2) {
// for (int j = 0; j < nt; j++) {
// for (int i = 0; i<nr; i++) {
// loggam.c_cf[0]->t[0]->t[ntnr*k + nr*j + i] = 0 ;
// }
// }
// }
// loggam.c_ajx[0] = 0 ;
// loggam.c_aj = 0 ;
// loggam.coef_i() ;
//###
}
//-------------------------------------------------
// Velocity fields set to zero in external domains
//-------------------------------------------------
loggam.annule(nzm1) ; // zero in the ZEC only
wit_w.annule(nzm1) ; // zero outside the star
u_euler.annule(nzm1) ; // zero outside the star
if (loggam.get_etat() != ETATZERO) {
(loggam.set()).set_dzpuis(0) ;
}
//################
// verification: test on gam_euler
// if (irrotational) {
// Tenseur gam_test = 1. / sqrt( 1 - unsurc2 * sprod(u_euler, u_euler) ) ;
// cout << "Etoile_bin::hydro_euler: test of gam_euler : " << endl ;
// cout << " maximum error : " << endl ;
// cout << max(gam_test() - gam_euler()) << endl ;
//cout << " relative error : " << endl ;
// cout << diffrel(gam_test(), gam_euler()) << endl ;
// }
//##################
//### Test
if (!irrotational) {
// Tenseur diff = gam - 1 ;
// cout << "Etoile_bin::hydro_euler: rigid motion: difference gam <-> 1 : "
// << endl ;
// cout << norme(diff()) / norme(gam()) << endl ;
//
// cout << "Etoile_bin::hydro_euler: rigid motion: difference wit_w <-> 0 : "
// << endl ;
// cout << "Component x : " << endl << norme(wit_w(0)) << endl ;
// cout << "Component y : " << endl << norme(wit_w(1)) << endl ;
// cout << "Component z : " << endl << norme(wit_w(2)) << endl ;
//####
gam = 1 ;
loggam = 0 ;
wit_w = 0 ;
}
// The derived quantities are obsolete
// -----------------------------------
del_deriv() ;
}
}
|