File: et_bin_nsbh_equilibrium.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (500 lines) | stat: -rw-r--r-- 16,109 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
 *  Method of class Etoile to compute a static spherical configuration
 *   of a neutron star in a NS-BH binary system.
 *
 *    (see file etoile.h for documentation).
 *
 */

/*
 *   Copyright (c) 2003 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char et_bin_nsbh_equilibrium_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_nsbh_equilibrium.C,v 1.13 2014/10/13 08:52:56 j_novak Exp $" ;

/*
 * $Id: et_bin_nsbh_equilibrium.C,v 1.13 2014/10/13 08:52:56 j_novak Exp $
 * $Log: et_bin_nsbh_equilibrium.C,v $
 * Revision 1.13  2014/10/13 08:52:56  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.12  2014/10/06 15:13:08  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.11  2008/09/26 08:38:45  p_grandclement
 * get rid of desaliasing
 *
 * Revision 1.10  2006/09/05 13:39:45  p_grandclement
 * update of the bin_ns_bh project
 *
 * Revision 1.9  2006/06/01 12:47:53  p_grandclement
 * update of the Bin_ns_bh project
 *
 * Revision 1.8  2006/04/25 07:21:58  p_grandclement
 * Various changes for the NS_BH project
 *
 * Revision 1.7  2006/03/30 07:33:47  p_grandclement
 * *** empty log message ***
 *
 * Revision 1.6  2005/10/18 13:12:33  p_grandclement
 * update of the mixted binary codes
 *
 * Revision 1.5  2005/08/29 15:10:17  p_grandclement
 * Addition of things needed :
 *   1) For BBH with different masses
 *   2) Provisory files for the mixted binaries (Bh and NS) : THIS IS NOT
 *   WORKING YET !!!
 *
 * Revision 1.4  2004/03/25 10:29:04  j_novak
 * All LORENE's units are now defined in the namespace Unites (in file unites.h).
 *
 * Revision 1.3  2003/10/24 12:34:06  k_taniguchi
 * Change the notation as it should be
 *
 * Revision 1.2  2003/10/21 11:49:33  k_taniguchi
 * Change the class from Etoile_bin to sub-class Et_bin_nsbh.
 *
 * Revision 1.1  2003/10/20 15:01:55  k_taniguchi
 * Computation of an equilibrium configuration of a neutron star
 * in a NS-BH binary system.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_nsbh_equilibrium.C,v 1.13 2014/10/13 08:52:56 j_novak Exp $
 *
 */

// Headers C
#include <cmath>

// Headers Lorene
#include "etoile.h"
#include "map.h"
#include "nbr_spx.h"
#include "et_bin_nsbh.h"
#include "param.h"

#include "graphique.h"
#include "utilitaires.h"
#include "unites.h"

namespace Lorene {
void Et_bin_nsbh::equilibrium_nsbh(bool adapt, double ent_c, int& niter, int mermax,
				   int mermax_poisson, double relax_poisson,
				   int mermax_potvit, double relax_potvit,
				   Tbl& diff) {
				   
    // Fundamental constants and units
    // -------------------------------
  using namespace Unites ;

    // Initializations
    // --------------
   
    const Mg3d* mg = mp.get_mg() ;
    int nz = mg->get_nzone() ;	    // total number of domains

    // The following is required to initialize mp_prev as a Map_et:
    Map_et& mp_et = dynamic_cast<Map_et&>(mp) ;

    // Error indicators
    // ----------------
    double& diff_ent = diff.set(0) ;
    double& diff_vel_pot = diff.set(1) ;
    double& diff_lapse = diff.set(2) ;
    double& diff_confpsi = diff.set(3) ;
    double& diff_shift_x = diff.set(4) ;
    double& diff_shift_y = diff.set(5) ;
    double& diff_shift_z = diff.set(6) ;

   
    // Parameters for the function Map_et::poisson for n_auto
    // ------------------------------------------------------
    double precis_poisson = 1.e-16 ;

    Param par_poisson1 ;
    par_poisson1.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson1.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson1.add_double(precis_poisson, 1) ; // required precision
    par_poisson1.add_int_mod(niter, 0) ; // number of iterations actually used
    par_poisson1.add_cmp_mod( ssjm1_lapse ) ;

    // Parameters for the function Map_et::poisson for confpsi_auto
    // ------------------------------------------------------------

    Param par_poisson2 ;
    par_poisson2.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson2.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson2.add_double(precis_poisson, 1) ; // required precision
    par_poisson2.add_int_mod(niter, 0) ; // number of iterations actually used
    par_poisson2.add_cmp_mod( ssjm1_confpsi ) ;

    // Parameters for the function Tenseur::poisson_vect
    // -------------------------------------------------

    Param par_poisson_vect ;
    par_poisson_vect.add_int(mermax_poisson, 0) ; 
                                            // maximum number of iterations
    par_poisson_vect.add_double(relax_poisson, 0) ; // relaxation parameter
    par_poisson_vect.add_double(precis_poisson, 1) ; // required precision
    par_poisson_vect.add_cmp_mod( ssjm1_khi ) ;
    par_poisson_vect.add_tenseur_mod( ssjm1_wshift ) ;
    par_poisson_vect.add_int_mod(niter, 0) ;
    
    // Parameters for the adaptation
    Param par_adapt ; 
    int nitermax = 100 ;  
    int niter_adapt ; 
    int adapt_flag = (adapt) ? 1 : 0 ;  
    int nz_search = nzet + 1 ;
    double precis_secant = 1.e-14 ; 
    double alpha_r ; 
    double reg_map = 1. ;   
    int k_b ;
    int j_b ; 
    Tbl ent_limit(nzet) ; 
    
    par_adapt.add_int(nitermax, 0) ; 
    par_adapt.add_int(nzet, 1) ;
    par_adapt.add_int(nz_search, 2) ;	
    par_adapt.add_int(adapt_flag, 3) ;
    par_adapt.add_int(j_b, 4) ;
    par_adapt.add_int(k_b, 5) ; 
    par_adapt.add_int_mod(niter_adapt, 0) ; 
    par_adapt.add_double(precis_secant, 0) ; 
    par_adapt.add_double(reg_map, 1)	; 
    par_adapt.add_double(alpha_r, 2) ;
    par_adapt.add_tbl(ent_limit, 0) ;
    
    // External potential
    // See Eq (99) from Gourgoulhon et al. (2001)
    // -----------------------------------------
   

    Tenseur ent_jm1 = ent ;	// Enthalpy at previous step
    Tenseur source(mp) ;    // source term in the equation for logn_auto
			    // and beta_auto
    Tenseur source_shift(mp, 1, CON, ref_triad) ;  // source term in the
						   //  equation for shift_auto

    //=========================================================================
    // 			Start of iteration
    //=========================================================================

    for(int mer=0 ; mer<mermax ; mer++ ) {

	cout << "-----------------------------------------------" << endl ;
	cout << "step: " << mer << endl ;
	cout << "diff_ent = " << diff_ent << endl ;
	//-----------------------------------------------------
	// Resolution of the elliptic equation for the velocity
	// scalar potential
	//-----------------------------------------------------

	if (irrotational) {
	    diff_vel_pot = velocity_potential(mermax_potvit, precis_poisson, 
					      relax_potvit) ; 
	}

	// Equation de la surface
	//if (adapt) {
	
	   // Rescaling of the radius : (Be carefull !)
	   int nt = mg->get_nt(nzet-1) ;
	   int np = mg->get_np(nzet-1) ;
	   int nr = mg->get_nr(nzet-1) ;
	  
	   // valeurs au centre
	   double hc = exp(ent_c) ;
	   double gamma_c = exp(loggam())(0,0,0,0) ;
	   double gamma_0_c = exp(-pot_centri())(0,0,0,0) ;
	   double n_auto_c = n_auto()(0,0,0,0) ;
	   double n_comp_c = n_comp()(0,0,0,0) ;   
	 
	   double alpha_square = 0 ;
	   double constante = 0;
	   for (int k=0; k<np; k++) {
	    for (int j=0; j<nt; j++) {
		
		  // valeurs au bord
	          double gamma_b = exp(loggam())(nzet-1,k,j,nr-1) ;
	          double gamma_0_b = exp(-pot_centri())(nzet-1,k,j,nr-1) ;
	          double n_auto_b = n_auto()(nzet-1,k,j,nr-1) ;
	          double n_comp_b = n_comp()(nzet-1,k,j,nr-1) ;
  
	   // Les solutions :
	   double alpha_square_courant = (gamma_0_c*gamma_b*n_comp_b - hc*gamma_c*gamma_0_b*n_comp_c) /
	                         (hc*gamma_c*gamma_0_b*n_auto_c-gamma_0_c*gamma_b*n_auto_b) ;
	   double constante_courant = gamma_b*(n_comp_b+alpha_square_courant*n_auto_b)/gamma_0_b ;

		if (alpha_square_courant > alpha_square) {
		    alpha_square = alpha_square_courant ; 
		    k_b = k ; 
		    j_b = j ;
		    constante = constante_courant ; 
		}
	    }
	}

	   alpha_r = sqrt(alpha_square) ;
	   cout << "Adaptation : " << k_b << " " << j_b << " " << alpha_r << endl ;
	    
	   // Le potentiel : 
	   Tenseur potentiel (constante*exp(-loggam-pot_centri)/(n_auto*alpha_square+n_comp)) ;
	   potentiel.set_std_base() ;
	   for (int l=nzet+1 ; l<nz ; l++)
	    	potentiel.set().va.set(l) = 1 ;

	   Map_et mp_prev = mp_et ; 
	   ent = log(potentiel) ;
	   ent.set_std_base() ;
           ent().va.smooth(nzet, (ent.set().va)) ;
	
	   ent_limit.set_etat_qcq() ; 
	   for (int l=0; l<nzet; l++) {	// loop on domains inside the star
	       ent_limit.set(l) = ent()(l, k_b, j_b, nr-1) ; 
	   } 
	   
	   // On adapte :  
	   mp.adapt(ent(), par_adapt, 4) ;
	   mp_prev.homothetie(alpha_r) ;

	   for (int l=nzet ; l<nz-1 ; l++)
	     mp.resize(l, 1./alpha_r) ;
	   mp.reevaluate_symy (&mp_prev, nzet, ent.set()) ;
	   


	// Equation of state
	//----------------------------------------------------
	equation_of_state() ; 	// computes new values for nbar (n), ener (e)
				// and press (p) from the new ent (H)

	//---------------------------------------------------------
	// Matter source terms in the gravitational field equations
	//---------------------------------------------------------
	hydro_euler() ;	// computes new values for ener_euler (E),
				// s_euler (S) and u_euler (U^i)
				
				
	//-------------------------------------------------
	//  Relative change in enthalpy
	//-------------------------------------------------

	Tbl diff_ent_tbl = diffrel( ent(), ent_jm1() ) ;
	diff_ent = diff_ent_tbl(0) ;
	for (int l=1; l<nzet; l++) {
	    diff_ent += diff_ent_tbl(l) ;
	}
	diff_ent /= nzet ;

	ent_jm1 = ent ;
	
	
	//--------------------------------------------------------
	// Poisson equation for n_auto
	//--------------------------------------------------------

	// Source 
	// See Eq (50) from Gourgoulhon et al. (2001)
	// ------------------------------------------

	Tenseur confpsi_q = pow(confpsi, 4.) ;
	Tenseur confpsi_c = pow(confpsi, 5.) ;
	
	if (relativistic) {
	    Tenseur tmp = flat_scalar_prod(tkij_tot, tkij_auto) ;
	    Tenseur kk (mp) ;
	    kk = 0 ;
	    Tenseur tmp2(mp) ;
	    tmp2.set_etat_qcq() ;
	    for (int i=0 ; i<3 ; i++) {
		tmp2.set() = tmp(i, i) ;
		kk = kk + tmp2 ;
	    }
	    
	    source = qpig * nnn * confpsi_q * (ener_euler + s_euler)
		+ nnn * confpsi_q * kk
		- 2.*flat_scalar_prod(d_confpsi_auto+d_confpsi_comp, d_n_auto) /
		confpsi ;
	}
	else {
	    cout <<
		"WARNING : Et_bin_nsbh is for the relativistic calculation"
		 << endl ;
	    abort() ;
	}

	source.set_std_base() ;	

	// Resolution of the Poisson equation
	// ----------------------------------
	Cmp n_auto_old (n_auto()) ;
	source().poisson(par_poisson1, n_auto.set()) ;
	n_auto.set() = n_auto() + 0.5 ; 
	
	// Difference pas prcdent
	// -----------------------------------------------------
	
	Tbl tdiff_lapse = diffrel(n_auto(), n_auto_old) ;
	cout <<
	"Relative difference on n_auto : "
	<< endl ;
	for (int l=0; l<nz; l++) {
	    cout << tdiff_lapse(l) << "  " ;
	}
	cout << endl ;
	diff_lapse = max(abs(tdiff_lapse)) ; 
	    
	if (relativistic) {
         
	
	    //--------------------------------------------------------
	    // Poisson equation for confpsi_auto 
	    //--------------------------------------------------------

	    // Source
	    // See Eq (51) from Gourgoulhon et al. (2001)
	    // ------------------------------------------

	    Tenseur tmp = flat_scalar_prod(tkij_tot, tkij_auto) ;
	    Tenseur kk (mp) ;
	    kk = 0 ;
	    Tenseur tmp2(mp) ;
	    tmp2.set_etat_qcq() ;
	    for (int i=0 ; i<3 ; i++) {
		tmp2.set() = tmp(i, i) ;
		kk = kk + tmp2 ;
	    }

	    source = -0.5 * qpig * confpsi_c * ener_euler
		- 0.125 * confpsi_c * kk ;

	    source.set_std_base() ; 	
	    
	    // Resolution of the Poisson equation 
	    // ----------------------------------
	    Cmp psi_old (confpsi_auto()) ;
	    source().poisson(par_poisson2, confpsi_auto.set()) ;
	    confpsi_auto.set() = confpsi_auto() + 0.5 ; 
	    
	    
	    // Check: has the Poisson equation been correctly solved ?
	    // -----------------------------------------------------

	    Tbl tdiff_confpsi = diffrel(confpsi_auto(), psi_old) ;
	    cout << 
		"Relative difference on confpsi_auto : "
		 << endl ;
	    for (int l=0; l<nz; l++) {
		cout << tdiff_confpsi(l) << "  " ;
	    }
	    cout << endl ;
	    diff_confpsi = max(abs(tdiff_confpsi)) ;
	    
	    //--------------------------------------------------------
	    // Vector Poisson equation for shift_auto 
	    //--------------------------------------------------------

	    // Source
	    // See Eq (52) from Gourgoulhon et al. (2001)
	    // ------
	 Tenseur vtmp = d_n_auto -6. * nnn * d_confpsi_auto / confpsi ;
	    source_shift = 4.*qpig * nnn *confpsi_q *(ener_euler + press)
	       * u_euler ;
        if (tkij_tot.get_etat() != ETATZERO)	    
	source_shift = source_shift + 2.* flat_scalar_prod(tkij_tot, vtmp) ;
	    source_shift.set_std_base() ;
	    // Resolution of the Poisson equation 
	    // ----------------------------------
	    // Filter for the source of shift vector 
	for (int i=0 ; i<3 ; i++)
         if (source_shift(i).get_etat() !=  ETATZERO)
           source_shift.set(i).va.coef_i() ;	   

for (int i=0; i<3; i++)
	      if ((source_shift(i).get_etat() != ETATZERO) && (source_shift(i).va.c->t[nz-1]->get_etat() != ETATZERO)) 
		source_shift.set(i).filtre(4) ;
	    for (int i=0; i<3; i++) {
		if(source_shift(i).dz_nonzero()) {
		    assert( source_shift(i).get_dzpuis() == 4 ) ;
		}
		else{
		    (source_shift.set(i)).set_dzpuis(4) ;
		}
	    }
	    //##
	    // source_shift.dec2_dzpuis() ;    // dzpuis 4 -> 2

	    double lambda_shift = double(1) / double(3) ;
	    // ON DOIT CHANGER DE TRIADE
	    source_shift.change_triad(mp.get_bvect_cart()) ;
	    Tenseur shift_old (shift_auto) ;  
	    source_shift.poisson_vect_oohara(lambda_shift, par_poisson_vect,
				      shift_auto, khi_shift) ;
	   shift_auto.change_triad(ref_triad) ;

	    // Check: has the equation for shift_auto been correctly solved ?
	    // --------------------------------------------------------------

	   

	    Tbl tdiff_shift_x = diffrel(shift_auto(0), shift_old(0)) ;
	    Tbl tdiff_shift_y = diffrel(shift_auto(1), shift_old(1)) ;
	    Tbl tdiff_shift_z = diffrel(shift_auto(2), shift_old(2)) ;

	    cout <<
		"Relative difference on shift_auto : "
		 << endl ; 
	    cout << "x component : " ;
	    for (int l=0; l<nz; l++) {
		cout << tdiff_shift_x(l) << "  " ;
	    }
	    cout << endl ;
	    cout << "y component : " ;
	    for (int l=0; l<nz; l++) {
		cout << tdiff_shift_y(l) << "  " ;
	    }
	    cout << endl ;
	    cout << "z component : " ;
	    for (int l=0; l<nz; l++) {
		cout << tdiff_shift_z(l) << "  " ;
	    }
	    cout << endl ;

	    diff_shift_x = max(abs(tdiff_shift_x)) ;
	    diff_shift_y = max(abs(tdiff_shift_y)) ;
	    diff_shift_z = max(abs(tdiff_shift_z)) ;
        } // End of relativistic equations

	
    } // End of main loop

    //=========================================================================
    // 			End of iteration
    //=========================================================================
}

// Truc pourri
void Et_bin_nsbh::equilibrium_nsbh (double, int, int, double,
				  int, double, double, const Tbl&, Tbl&) {
				  
		cout << "Not implemented !" << endl ;
		abort() ;
}
}