1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
/*
* Method of class Etoile to compute a static spherical configuration
* of a neutron star in a NS-BH binary system.
*
* (see file etoile.h for documentation).
*
*/
/*
* Copyright (c) 2003 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char et_bin_nsbh_equilibrium_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_nsbh_equilibrium.C,v 1.13 2014/10/13 08:52:56 j_novak Exp $" ;
/*
* $Id: et_bin_nsbh_equilibrium.C,v 1.13 2014/10/13 08:52:56 j_novak Exp $
* $Log: et_bin_nsbh_equilibrium.C,v $
* Revision 1.13 2014/10/13 08:52:56 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.12 2014/10/06 15:13:08 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.11 2008/09/26 08:38:45 p_grandclement
* get rid of desaliasing
*
* Revision 1.10 2006/09/05 13:39:45 p_grandclement
* update of the bin_ns_bh project
*
* Revision 1.9 2006/06/01 12:47:53 p_grandclement
* update of the Bin_ns_bh project
*
* Revision 1.8 2006/04/25 07:21:58 p_grandclement
* Various changes for the NS_BH project
*
* Revision 1.7 2006/03/30 07:33:47 p_grandclement
* *** empty log message ***
*
* Revision 1.6 2005/10/18 13:12:33 p_grandclement
* update of the mixted binary codes
*
* Revision 1.5 2005/08/29 15:10:17 p_grandclement
* Addition of things needed :
* 1) For BBH with different masses
* 2) Provisory files for the mixted binaries (Bh and NS) : THIS IS NOT
* WORKING YET !!!
*
* Revision 1.4 2004/03/25 10:29:04 j_novak
* All LORENE's units are now defined in the namespace Unites (in file unites.h).
*
* Revision 1.3 2003/10/24 12:34:06 k_taniguchi
* Change the notation as it should be
*
* Revision 1.2 2003/10/21 11:49:33 k_taniguchi
* Change the class from Etoile_bin to sub-class Et_bin_nsbh.
*
* Revision 1.1 2003/10/20 15:01:55 k_taniguchi
* Computation of an equilibrium configuration of a neutron star
* in a NS-BH binary system.
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_nsbh_equilibrium.C,v 1.13 2014/10/13 08:52:56 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "etoile.h"
#include "map.h"
#include "nbr_spx.h"
#include "et_bin_nsbh.h"
#include "param.h"
#include "graphique.h"
#include "utilitaires.h"
#include "unites.h"
namespace Lorene {
void Et_bin_nsbh::equilibrium_nsbh(bool adapt, double ent_c, int& niter, int mermax,
int mermax_poisson, double relax_poisson,
int mermax_potvit, double relax_potvit,
Tbl& diff) {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
// Initializations
// --------------
const Mg3d* mg = mp.get_mg() ;
int nz = mg->get_nzone() ; // total number of domains
// The following is required to initialize mp_prev as a Map_et:
Map_et& mp_et = dynamic_cast<Map_et&>(mp) ;
// Error indicators
// ----------------
double& diff_ent = diff.set(0) ;
double& diff_vel_pot = diff.set(1) ;
double& diff_lapse = diff.set(2) ;
double& diff_confpsi = diff.set(3) ;
double& diff_shift_x = diff.set(4) ;
double& diff_shift_y = diff.set(5) ;
double& diff_shift_z = diff.set(6) ;
// Parameters for the function Map_et::poisson for n_auto
// ------------------------------------------------------
double precis_poisson = 1.e-16 ;
Param par_poisson1 ;
par_poisson1.add_int(mermax_poisson, 0) ; // maximum number of iterations
par_poisson1.add_double(relax_poisson, 0) ; // relaxation parameter
par_poisson1.add_double(precis_poisson, 1) ; // required precision
par_poisson1.add_int_mod(niter, 0) ; // number of iterations actually used
par_poisson1.add_cmp_mod( ssjm1_lapse ) ;
// Parameters for the function Map_et::poisson for confpsi_auto
// ------------------------------------------------------------
Param par_poisson2 ;
par_poisson2.add_int(mermax_poisson, 0) ; // maximum number of iterations
par_poisson2.add_double(relax_poisson, 0) ; // relaxation parameter
par_poisson2.add_double(precis_poisson, 1) ; // required precision
par_poisson2.add_int_mod(niter, 0) ; // number of iterations actually used
par_poisson2.add_cmp_mod( ssjm1_confpsi ) ;
// Parameters for the function Tenseur::poisson_vect
// -------------------------------------------------
Param par_poisson_vect ;
par_poisson_vect.add_int(mermax_poisson, 0) ;
// maximum number of iterations
par_poisson_vect.add_double(relax_poisson, 0) ; // relaxation parameter
par_poisson_vect.add_double(precis_poisson, 1) ; // required precision
par_poisson_vect.add_cmp_mod( ssjm1_khi ) ;
par_poisson_vect.add_tenseur_mod( ssjm1_wshift ) ;
par_poisson_vect.add_int_mod(niter, 0) ;
// Parameters for the adaptation
Param par_adapt ;
int nitermax = 100 ;
int niter_adapt ;
int adapt_flag = (adapt) ? 1 : 0 ;
int nz_search = nzet + 1 ;
double precis_secant = 1.e-14 ;
double alpha_r ;
double reg_map = 1. ;
int k_b ;
int j_b ;
Tbl ent_limit(nzet) ;
par_adapt.add_int(nitermax, 0) ;
par_adapt.add_int(nzet, 1) ;
par_adapt.add_int(nz_search, 2) ;
par_adapt.add_int(adapt_flag, 3) ;
par_adapt.add_int(j_b, 4) ;
par_adapt.add_int(k_b, 5) ;
par_adapt.add_int_mod(niter_adapt, 0) ;
par_adapt.add_double(precis_secant, 0) ;
par_adapt.add_double(reg_map, 1) ;
par_adapt.add_double(alpha_r, 2) ;
par_adapt.add_tbl(ent_limit, 0) ;
// External potential
// See Eq (99) from Gourgoulhon et al. (2001)
// -----------------------------------------
Tenseur ent_jm1 = ent ; // Enthalpy at previous step
Tenseur source(mp) ; // source term in the equation for logn_auto
// and beta_auto
Tenseur source_shift(mp, 1, CON, ref_triad) ; // source term in the
// equation for shift_auto
//=========================================================================
// Start of iteration
//=========================================================================
for(int mer=0 ; mer<mermax ; mer++ ) {
cout << "-----------------------------------------------" << endl ;
cout << "step: " << mer << endl ;
cout << "diff_ent = " << diff_ent << endl ;
//-----------------------------------------------------
// Resolution of the elliptic equation for the velocity
// scalar potential
//-----------------------------------------------------
if (irrotational) {
diff_vel_pot = velocity_potential(mermax_potvit, precis_poisson,
relax_potvit) ;
}
// Equation de la surface
//if (adapt) {
// Rescaling of the radius : (Be carefull !)
int nt = mg->get_nt(nzet-1) ;
int np = mg->get_np(nzet-1) ;
int nr = mg->get_nr(nzet-1) ;
// valeurs au centre
double hc = exp(ent_c) ;
double gamma_c = exp(loggam())(0,0,0,0) ;
double gamma_0_c = exp(-pot_centri())(0,0,0,0) ;
double n_auto_c = n_auto()(0,0,0,0) ;
double n_comp_c = n_comp()(0,0,0,0) ;
double alpha_square = 0 ;
double constante = 0;
for (int k=0; k<np; k++) {
for (int j=0; j<nt; j++) {
// valeurs au bord
double gamma_b = exp(loggam())(nzet-1,k,j,nr-1) ;
double gamma_0_b = exp(-pot_centri())(nzet-1,k,j,nr-1) ;
double n_auto_b = n_auto()(nzet-1,k,j,nr-1) ;
double n_comp_b = n_comp()(nzet-1,k,j,nr-1) ;
// Les solutions :
double alpha_square_courant = (gamma_0_c*gamma_b*n_comp_b - hc*gamma_c*gamma_0_b*n_comp_c) /
(hc*gamma_c*gamma_0_b*n_auto_c-gamma_0_c*gamma_b*n_auto_b) ;
double constante_courant = gamma_b*(n_comp_b+alpha_square_courant*n_auto_b)/gamma_0_b ;
if (alpha_square_courant > alpha_square) {
alpha_square = alpha_square_courant ;
k_b = k ;
j_b = j ;
constante = constante_courant ;
}
}
}
alpha_r = sqrt(alpha_square) ;
cout << "Adaptation : " << k_b << " " << j_b << " " << alpha_r << endl ;
// Le potentiel :
Tenseur potentiel (constante*exp(-loggam-pot_centri)/(n_auto*alpha_square+n_comp)) ;
potentiel.set_std_base() ;
for (int l=nzet+1 ; l<nz ; l++)
potentiel.set().va.set(l) = 1 ;
Map_et mp_prev = mp_et ;
ent = log(potentiel) ;
ent.set_std_base() ;
ent().va.smooth(nzet, (ent.set().va)) ;
ent_limit.set_etat_qcq() ;
for (int l=0; l<nzet; l++) { // loop on domains inside the star
ent_limit.set(l) = ent()(l, k_b, j_b, nr-1) ;
}
// On adapte :
mp.adapt(ent(), par_adapt, 4) ;
mp_prev.homothetie(alpha_r) ;
for (int l=nzet ; l<nz-1 ; l++)
mp.resize(l, 1./alpha_r) ;
mp.reevaluate_symy (&mp_prev, nzet, ent.set()) ;
// Equation of state
//----------------------------------------------------
equation_of_state() ; // computes new values for nbar (n), ener (e)
// and press (p) from the new ent (H)
//---------------------------------------------------------
// Matter source terms in the gravitational field equations
//---------------------------------------------------------
hydro_euler() ; // computes new values for ener_euler (E),
// s_euler (S) and u_euler (U^i)
//-------------------------------------------------
// Relative change in enthalpy
//-------------------------------------------------
Tbl diff_ent_tbl = diffrel( ent(), ent_jm1() ) ;
diff_ent = diff_ent_tbl(0) ;
for (int l=1; l<nzet; l++) {
diff_ent += diff_ent_tbl(l) ;
}
diff_ent /= nzet ;
ent_jm1 = ent ;
//--------------------------------------------------------
// Poisson equation for n_auto
//--------------------------------------------------------
// Source
// See Eq (50) from Gourgoulhon et al. (2001)
// ------------------------------------------
Tenseur confpsi_q = pow(confpsi, 4.) ;
Tenseur confpsi_c = pow(confpsi, 5.) ;
if (relativistic) {
Tenseur tmp = flat_scalar_prod(tkij_tot, tkij_auto) ;
Tenseur kk (mp) ;
kk = 0 ;
Tenseur tmp2(mp) ;
tmp2.set_etat_qcq() ;
for (int i=0 ; i<3 ; i++) {
tmp2.set() = tmp(i, i) ;
kk = kk + tmp2 ;
}
source = qpig * nnn * confpsi_q * (ener_euler + s_euler)
+ nnn * confpsi_q * kk
- 2.*flat_scalar_prod(d_confpsi_auto+d_confpsi_comp, d_n_auto) /
confpsi ;
}
else {
cout <<
"WARNING : Et_bin_nsbh is for the relativistic calculation"
<< endl ;
abort() ;
}
source.set_std_base() ;
// Resolution of the Poisson equation
// ----------------------------------
Cmp n_auto_old (n_auto()) ;
source().poisson(par_poisson1, n_auto.set()) ;
n_auto.set() = n_auto() + 0.5 ;
// Difference pas prcdent
// -----------------------------------------------------
Tbl tdiff_lapse = diffrel(n_auto(), n_auto_old) ;
cout <<
"Relative difference on n_auto : "
<< endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_lapse(l) << " " ;
}
cout << endl ;
diff_lapse = max(abs(tdiff_lapse)) ;
if (relativistic) {
//--------------------------------------------------------
// Poisson equation for confpsi_auto
//--------------------------------------------------------
// Source
// See Eq (51) from Gourgoulhon et al. (2001)
// ------------------------------------------
Tenseur tmp = flat_scalar_prod(tkij_tot, tkij_auto) ;
Tenseur kk (mp) ;
kk = 0 ;
Tenseur tmp2(mp) ;
tmp2.set_etat_qcq() ;
for (int i=0 ; i<3 ; i++) {
tmp2.set() = tmp(i, i) ;
kk = kk + tmp2 ;
}
source = -0.5 * qpig * confpsi_c * ener_euler
- 0.125 * confpsi_c * kk ;
source.set_std_base() ;
// Resolution of the Poisson equation
// ----------------------------------
Cmp psi_old (confpsi_auto()) ;
source().poisson(par_poisson2, confpsi_auto.set()) ;
confpsi_auto.set() = confpsi_auto() + 0.5 ;
// Check: has the Poisson equation been correctly solved ?
// -----------------------------------------------------
Tbl tdiff_confpsi = diffrel(confpsi_auto(), psi_old) ;
cout <<
"Relative difference on confpsi_auto : "
<< endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_confpsi(l) << " " ;
}
cout << endl ;
diff_confpsi = max(abs(tdiff_confpsi)) ;
//--------------------------------------------------------
// Vector Poisson equation for shift_auto
//--------------------------------------------------------
// Source
// See Eq (52) from Gourgoulhon et al. (2001)
// ------
Tenseur vtmp = d_n_auto -6. * nnn * d_confpsi_auto / confpsi ;
source_shift = 4.*qpig * nnn *confpsi_q *(ener_euler + press)
* u_euler ;
if (tkij_tot.get_etat() != ETATZERO)
source_shift = source_shift + 2.* flat_scalar_prod(tkij_tot, vtmp) ;
source_shift.set_std_base() ;
// Resolution of the Poisson equation
// ----------------------------------
// Filter for the source of shift vector
for (int i=0 ; i<3 ; i++)
if (source_shift(i).get_etat() != ETATZERO)
source_shift.set(i).va.coef_i() ;
for (int i=0; i<3; i++)
if ((source_shift(i).get_etat() != ETATZERO) && (source_shift(i).va.c->t[nz-1]->get_etat() != ETATZERO))
source_shift.set(i).filtre(4) ;
for (int i=0; i<3; i++) {
if(source_shift(i).dz_nonzero()) {
assert( source_shift(i).get_dzpuis() == 4 ) ;
}
else{
(source_shift.set(i)).set_dzpuis(4) ;
}
}
//##
// source_shift.dec2_dzpuis() ; // dzpuis 4 -> 2
double lambda_shift = double(1) / double(3) ;
// ON DOIT CHANGER DE TRIADE
source_shift.change_triad(mp.get_bvect_cart()) ;
Tenseur shift_old (shift_auto) ;
source_shift.poisson_vect_oohara(lambda_shift, par_poisson_vect,
shift_auto, khi_shift) ;
shift_auto.change_triad(ref_triad) ;
// Check: has the equation for shift_auto been correctly solved ?
// --------------------------------------------------------------
Tbl tdiff_shift_x = diffrel(shift_auto(0), shift_old(0)) ;
Tbl tdiff_shift_y = diffrel(shift_auto(1), shift_old(1)) ;
Tbl tdiff_shift_z = diffrel(shift_auto(2), shift_old(2)) ;
cout <<
"Relative difference on shift_auto : "
<< endl ;
cout << "x component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_x(l) << " " ;
}
cout << endl ;
cout << "y component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_y(l) << " " ;
}
cout << endl ;
cout << "z component : " ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_z(l) << " " ;
}
cout << endl ;
diff_shift_x = max(abs(tdiff_shift_x)) ;
diff_shift_y = max(abs(tdiff_shift_y)) ;
diff_shift_z = max(abs(tdiff_shift_z)) ;
} // End of relativistic equations
} // End of main loop
//=========================================================================
// End of iteration
//=========================================================================
}
// Truc pourri
void Et_bin_nsbh::equilibrium_nsbh (double, int, int, double,
int, double, double, const Tbl&, Tbl&) {
cout << "Not implemented !" << endl ;
abort() ;
}
}
|