1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
/*
* Method of class Etoile_bin to compute the velocity scalar potential $\psi$
* by solving the continuity equation.
*
* (see file etoile.h for documentation).
*
*/
/*
* Copyright (c) 2000-2001 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char et_bin_vel_pot_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_vel_pot.C,v 1.15 2014/10/13 08:52:56 j_novak Exp $" ;
/*
* $Id: et_bin_vel_pot.C,v 1.15 2014/10/13 08:52:56 j_novak Exp $
* $Log: et_bin_vel_pot.C,v $
* Revision 1.15 2014/10/13 08:52:56 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.14 2007/10/18 14:26:43 e_gourgoulhon
* Changed the call to Eos::der_nbar_ent in order to allow for MEos type
* of equation of state.
*
* Revision 1.13 2007/10/16 21:56:26 e_gourgoulhon
* Can deal with more than one domain into the star,
* thanks to the new function Map_radial::poisson_compact.
*
* Revision 1.12 2005/10/18 13:12:33 p_grandclement
* update of the mixted binary codes
*
* Revision 1.11 2004/05/25 15:38:38 f_limousin
* Minor modifs.
*
* Revision 1.10 2004/05/10 10:17:27 f_limousin
* Add a new member ssjm1_psi of class Etoile for the resolution of the
* oisson_interne equation
*
* Revision 1.9 2004/04/19 11:26:17 f_limousin
* Add a new function Etoile_bin::velocity_potential( , , , ) for the
* case of strange stars
*
* Revision 1.8 2004/04/08 17:02:00 f_limousin
* Modif to avoid an error in the compilation
*
* Revision 1.7 2004/04/08 16:52:58 f_limousin
* Minor change
*
* Revision 1.6 2004/04/08 16:36:36 f_limousin
* Implement the resolution of the continuity equation for strange
* stars.
*
* Revision 1.5 2003/10/24 11:43:57 e_gourgoulhon
* beta is now computed as ln(AN) in the case beta_auto
* is undefined (for instance, if the companion is black hole).
*
* Revision 1.4 2003/01/17 13:38:56 f_limousin
* Add comments
*
* Revision 1.3 2003/01/13 15:31:50 e_gourgoulhon
* Suppressed the desaliasing
* (did not worked due to missing basis in ylm).
*
* Revision 1.2 2002/12/10 14:44:21 k_taniguchi
* Change the multiplication "*" to "%"
* and flat_scalar_prod to flat_scalar_prod_desal.
*
* Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
* LORENE
*
* Revision 2.9 2001/02/23 15:18:59 eric
* Modification du calcul de zeta_h pour eviter division par zero
* dans les domaines externes a l'etoile.
*
* Revision 2.8 2001/02/07 09:47:42 eric
* zeta_h est desormais donne par Eos::der_nbar_ent.
*
* Revision 2.7 2000/12/22 13:10:03 eric
* Prolongement C^1 de dpsi en dehors de l'etoile.
*
* Revision 2.6 2000/03/22 12:56:44 eric
* Nouveau prototype d'Etoile_bin::velocity_potential : l'erreur est
* retournee en double.
*
* Revision 2.5 2000/02/25 17:35:29 eric
* Annulation de la source dans les zones externes avant l'appel a
* poisson_compact.
*
* Revision 2.4 2000/02/22 11:42:55 eric
* Test resolution de l'equation.
*
* Revision 2.3 2000/02/22 10:42:25 eric
* Correction erreur dans les termes sources: multiplication par unsurc2 de
* termes relativistes.
*
* Revision 2.2 2000/02/21 15:05:50 eric
* Traitement du cas psi0 = 0 .
*
* Revision 2.1 2000/02/21 13:59:39 eric
* Remplacement du membre psi par psi0.
* Modif calcul de d_psi a la fin.
*
* Revision 2.0 2000/02/17 18:50:44 eric
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/et_bin_vel_pot.C,v 1.15 2014/10/13 08:52:56 j_novak Exp $
*
*/
// Headers Lorene
#include "scalar.h"
#include "metrique.h"
#include "etoile.h"
#include "eos.h"
#include "param.h"
#include "et_bin_nsbh.h"
#include "utilitaires.h"
// Local prototype
namespace Lorene {
Cmp raccord_c1(const Cmp& uu, int l1) ;
double Etoile_bin::velocity_potential(int mermax, double precis, double relax) {
// Which star is that ?
const Et_bin_nsbh* pnsbh = dynamic_cast<const Et_bin_nsbh*>(this) ;
if (eos.identify() == 5 || eos.identify() == 4 ||
eos.identify() == 3) {
// Routine used for binary strange stars.
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
//----------------------------------
// Specific relativistic enthalpy ---> hhh
//----------------------------------
Tenseur hhh = exp(unsurc2 * ent) ; // = 1 at the Newtonian limit
hhh.set_std_base() ;
//----------------------------------------------
// Computation of W^i = - A^2 h Gamma_n B^i/N
// See Eq (62) from Gourgoulhon et al. (2001)
//----------------------------------------------
Tenseur www = - a_car * hhh * gam_euler * bsn ;
www.change_triad( mp.get_bvect_cart() ) ; // components on the mapping
// Cartesian basis
//-------------------------------------------------
// Constant value of W^i at the center of the star
//-------------------------------------------------
Tenseur v_orb(mp, 1, CON, mp.get_bvect_cart()) ;
v_orb.set_etat_qcq() ;
for (int i=0; i<3; i++) {
v_orb.set(i) = www(i)(0, 0, 0, 0) ;
}
v_orb.annule(nzm1, nzm1) ; // set to zero in the ZEC
v_orb.set_triad( *(www.get_triad()) ) ;
v_orb.set_std_base() ;
//-------------------------------------------------
// Source and coefficients a,b for poisson_compact (idenpendent from psi0)
//-------------------------------------------------
Cmp dndh_log = eos.der_nbar_ent(ent(), nzet) ;
// In order to avoid any division by zero in the computation of zeta_h
// the value of dndh_log is set to 1 in the external domains:
for (int l=nzet; l <= nzm1; l++) {
dndh_log.set(l) = 1 ;
}
double erreur ;
Tenseur zeta_h( ent() / dndh_log ) ;
zeta_h.set_std_base() ;
Scalar zeta_h_scalar (zeta_h()) ;
zeta_h_scalar.set_outer_boundary(0, (ent() / dndh_log)(0,0,0,0)) ;
for (int l=1; l<=nzm1; l++)
zeta_h_scalar.set_domain(l) = 1 ;
Cmp zeta_h_cmp (zeta_h_scalar) ;
zeta_h.set() = zeta_h_cmp ;
zeta_h.set_std_base() ;
Tenseur beta(mp) ;
if (pnsbh!=0x0) {
beta = log( sqrt(a_car) * nnn ) ;
beta.set_std_base() ;
}
else {
beta = beta_auto + beta_comp ;
}
Tenseur tmp_zeta = 1 - unsurc2 * zeta_h ;
tmp_zeta.set_std_base() ;
Tenseur bb = tmp_zeta * ent.gradient_spher()
+ unsurc2 * zeta_h * beta.gradient_spher() ;
Tenseur entmb = ent - beta ;
Tenseur grad_ent (ent.gradient()) ;
grad_ent.change_triad(mp.get_bvect_spher()) ;
// Source for the poisson equation
// See Eq (63) from Gourgoulhon et al. (2001)
Tenseur source = flat_scalar_prod( www - v_orb, ent.gradient() )
+ unsurc2 * zeta_h * (
flat_scalar_prod( v_orb, entmb.gradient() )
+ flat_scalar_prod( www, gam_euler.gradient() )
/ gam_euler ) ;
for (int l=1; l<=nzm1; l++)
source.set().annule(l) ;
source = (source - flat_scalar_prod(bb, psi0.gradient_spher()))
/ zeta_h ;
source.annule(nzet, nzm1) ;
Param par ;
int niter ;
par.add_int(mermax) ;
par.add_double(precis, 0) ;
par.add_double(relax, 1) ;
par.add_int_mod(niter) ;
par.add_cmp_mod(ssjm1_psi, 0) ;
if (psi0.get_etat() == ETATZERO) {
psi0.set_etat_qcq() ;
psi0.set() = 0 ;
}
int nr = mp.get_mg()->get_nr(0);
int nt = mp.get_mg()->get_nt(0);
int np = mp.get_mg()->get_np(0);
cout << "nr = " << nr << " nt = " << nt << " np = " << np << endl ;
cout << "psi0" << endl << norme(psi0()/(nr*nt*np)) << endl ;
cout << "d(psi)/dr" << endl << norme(psi0.set().dsdr()/(nr*nt*np)) << endl ;
Valeur lim(mp.get_mg()->get_angu()) ;
lim.annule_hard() ;
Tenseur normal (mp, 1, CON, mp.get_bvect_cart()) ;
Tenseur normal2 (mp, 1, COV, mp.get_bvect_cart()) ;
normal.set_etat_qcq() ;
normal2.set_etat_qcq() ;
const Coord& rr0 = mp.r ;
Tenseur rr(mp) ;
rr.set_etat_qcq() ;
rr.set() = rr0 ;
rr.set_std_base() ;
Tenseur_sym plat(mp, 2, COV, mp.get_bvect_cart() ) ;
plat.set_etat_qcq() ;
for (int i=0; i<3; i++) {
for (int j=0; j<i; j++) {
plat.set(i,j) = 0 ;
}
plat.set(i,i) = 1 ;
}
plat.set_std_base() ;
Metrique flat(plat, true) ;
Tenseur dcov_r = rr.derive_cov(flat) ;
for (int i=0; i<3; i++) {
normal.set(i) = dcov_r(i) ;
normal2.set(i) = dcov_r(i) ;
}
normal.change_triad(mp.get_bvect_spher()) ;
normal2.change_triad(mp.get_bvect_spher()) ;
Tenseur bsn0 (bsn) ;
bsn0.change_triad(mp.get_bvect_cart()) ;
Tenseur aa (mp, 1, CON, mp.get_bvect_cart()) ;
aa = - v_orb - a_car * gam_euler * hhh * bsn0 ;
aa.change_triad(mp.get_bvect_spher()) ;
Tenseur dcov_psi = psi0.derive_cov(flat) ;
dcov_psi.change_triad(mp.get_bvect_spher()) ;
Cmp limite (mp) ;
limite = ( - dcov_psi(1) * normal(1) - dcov_psi(2) * normal(2)
+ contract(aa, 0, normal2, 0)())
/normal(0) ;
for (int j=0; j<nt; j++)
for (int k=0; k<np; k++)
lim.set(0, k, j, 0) = limite(0, k, j, nr-1) ;
// cout << "lim" << endl << lim << endl ;
lim.std_base_scal() ;
Cmp resu (psi0()) ;
source().poisson_neumann_interne(lim, par, resu) ;
psi0 = resu ;
/*
resu.va.ylm() ;
Scalar psi00(resu) ;
psi00.spectral_display("psi00") ;
cout << "value of d(psi)/dr at the surface after poisson" << endl ;
for (int j=0; j<nt; j++)
for (int k=0; k<np; k++)
cout << "j = " << j << " ; k = " << k << " : " <<
psi0.set().dsdr()(0, k, j, nr-1) << endl ;
*/
for (int l=1; l<=nzm1; l++)
psi0.set().annule(l) ;
//---------------------------------------------------
// Check of the solution
//---------------------------------------------------
Cmp laplacien_psi0 = psi0().laplacien() ;
erreur = diffrel(laplacien_psi0, source())(0) ;
cout << "Check of the resolution of the continuity equation for strange stars: "
<< endl ;
cout << "norme(source) : " << norme(source())(0) << endl
<< "Error in the solution : " << erreur << endl ;
//--------------------------------
// Computation of grad(psi)
//--------------------------------
// The computation is done component by component because psi0.gradient()
// is a covariant vector, whereas v_orb is a contravariant one.
d_psi.set_etat_qcq() ;
for (int i=0; i<3; i++) {
d_psi.set(i) = (psi0.gradient())(i) + v_orb(i) ;
}
d_psi.set_triad( *(v_orb.get_triad()) ) ;
// C^1 continuation of d_psi outside the star
// (to ensure a smooth enthalpy field accross the stellar surface)
// ----------------------------------------------------------------
d_psi.annule(nzet, nzm1) ;
for (int i=0; i<3; i++) {
d_psi.set(i) = raccord_c1(d_psi(i), nzet) ;
}
assert( d_psi.get_triad() == &(mp.get_bvect_cart()) ) ;
d_psi.change_triad(ref_triad) ;
return erreur ;
} // End of strange stars case
//=============================================================================
else {
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
//----------------------------------
// Specific relativistic enthalpy ---> hhh
//----------------------------------
Tenseur hhh = exp(unsurc2 * ent) ; // = 1 at the Newtonian limit
hhh.set_std_base() ;
//----------------------------------------------
// Computation of W^i = - A^2 h Gamma_n B^i/N
// See Eq (62) from Gourgoulhon et al. (2001)
//----------------------------------------------
Tenseur www = - a_car * hhh * gam_euler * bsn ;
www.change_triad( mp.get_bvect_cart() ) ; // components on the mapping
// Cartesian basis
//-------------------------------------------------
// Constant value of W^i at the center of the star
//-------------------------------------------------
Tenseur v_orb(mp, 1, CON, mp.get_bvect_cart()) ;
v_orb.set_etat_qcq() ;
for (int i=0; i<3; i++) {
v_orb.set(i) = www(i)(0, 0, 0, 0) ;
}
v_orb.set_triad( *(www.get_triad()) ) ;
v_orb.set_std_base() ;
//-------------------------------------------------
// Source and coefficients a,b for poisson_compact (idenpendent from psi0)
//-------------------------------------------------
Cmp dndh_log(mp) ;
dndh_log = 0 ;
for (int l=0; l<nzet; l++) {
Param par ; // Paramater for multi-domain equation of state
par.add_int(l) ;
dndh_log = dndh_log + eos.der_nbar_ent(ent(), 1, l, &par) ;
}
// Cmp dndh_log = eos.der_nbar_ent(ent(), nzet) ;
// In order to avoid any division by zero in the computation of zeta_h
// the value of dndh_log is set to 1 in the external domains:
for (int l=nzet; l <= nzm1; l++) {
dndh_log.set(l) = 1 ;
}
Tenseur zeta_h( ent() / dndh_log ) ;
zeta_h.set_std_base() ;
Tenseur beta(mp) ;
if (pnsbh!=0x0) {
beta = log( sqrt(a_car) * nnn ) ;
beta.set_std_base() ;
}
else {
beta = beta_auto + beta_comp ;
}
Tenseur tmp_zeta = 1 - unsurc2 * zeta_h ;
tmp_zeta.set_std_base() ;
Tenseur bb = tmp_zeta * ent.gradient_spher()
+ unsurc2 * zeta_h * beta.gradient_spher() ;
Tenseur entmb = ent - beta ;
// See Eq (63) from Gourgoulhon et al. (2001)
Tenseur source = flat_scalar_prod( www - v_orb, ent.gradient() )
+ unsurc2 * zeta_h * (
flat_scalar_prod( v_orb, entmb.gradient() )
+ flat_scalar_prod( www, gam_euler.gradient() )
/ gam_euler ) ;
source.annule(nzet, nzm1) ;
//---------------------------------------------------
// Resolution by means of Map_radial::poisson_compact
//---------------------------------------------------
Param par ;
int niter ;
par.add_int(mermax) ;
par.add_double(precis, 0) ;
par.add_double(relax, 1) ;
par.add_int_mod(niter) ;
if (psi0.get_etat() == ETATZERO) {
psi0.set_etat_qcq() ;
psi0.set() = 0 ;
}
source.set().va.ylm() ;
mp.poisson_compact(nzet, source(), zeta_h(), bb, par, psi0.set() ) ;
//---------------------------------------------------
// Check of the solution
//---------------------------------------------------
Tenseur bb_dpsi0 = flat_scalar_prod( bb, psi0.gradient_spher() ) ;
Cmp oper = zeta_h() * psi0().laplacien() + bb_dpsi0() ;
source.set().va.ylm_i() ;
cout << "Check of the resolution of the continuity equation : " << endl ;
Tbl terr = diffrel(oper, source()) ;
double erreur = 0 ;
for (int l=0; l<nzet; l++) {
double err = terr(l) ;
cout << " domain " << l << " : norme(source) : " << norme(source())(l)
<< " relative error : " << err << endl ;
if (err > erreur) erreur = err ;
}
// arrete() ;
//--------------------------------
// Computation of grad(psi)
//--------------------------------
// The computation is done component by component because psi0.gradient()
// is a covariant vector, whereas v_orb is a contravariant one.
d_psi.set_etat_qcq() ;
for (int i=0; i<3; i++) {
d_psi.set(i) = (psi0.gradient())(i) + v_orb(i) ;
}
d_psi.set_triad( *(v_orb.get_triad()) ) ;
// C^1 continuation of d_psi outside the star
// (to ensure a smooth enthalpy field accross the stellar surface)
// ----------------------------------------------------------------
d_psi.annule(nzet, nzm1) ;
for (int i=0; i<3; i++) {
d_psi.set(i) = raccord_c1(d_psi(i), nzet) ;
}
assert( d_psi.get_triad() == &(mp.get_bvect_cart()) ) ;
d_psi.change_triad(ref_triad) ;
return erreur ;
}
}
}
|