File: et_magnetisation_comp.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (849 lines) | stat: -rw-r--r-- 23,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*
 * Computational functions for magnetized rotating equilibrium
 *
 * (see file et_rot_mag.h for documentation)
 *
 */

/*
 *   Copyright (c) 2013 Debarati Chatterjee, Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char et_magnetisation_comp_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_magnetisation_comp.C,v 1.14 2016/11/01 09:12:59 j_novak Exp $" ;

/*
 * $Id: et_magnetisation_comp.C,v 1.14 2016/11/01 09:12:59 j_novak Exp $
 * $Log: et_magnetisation_comp.C,v $
 * Revision 1.14  2016/11/01 09:12:59  j_novak
 * Correction of a missing '-' in mom_quad_old().
 *
 * Revision 1.13  2015/06/12 12:38:25  j_novak
 * Implementation of the corrected formula for the quadrupole momentum.
 *
 * Revision 1.12  2014/10/21 09:23:54  j_novak
 * Addition of global functions mass_g(), angu_mom(), grv2/3() and mom_quad().
 *
 * Revision 1.11  2014/10/13 08:52:57  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.10  2014/07/04 12:08:02  j_novak
 * Added some filtering.
 *
 * Revision 1.9  2014/05/14 15:19:05  j_novak
 * The magnetisation field is now filtered.
 *
 * Revision 1.8  2014/05/13 15:37:12  j_novak
 * Updated to new magnetic units.
 *
 * Revision 1.7  2014/05/01 13:07:16  j_novak
 * Fixed two bugs: in the computation of F31,F32 and the triad of U_up.
 *
 * Revision 1.6  2014/04/29 13:46:07  j_novak
 * Addition of switches 'use_B_in_eos' and 'include_magnetisation' to control the model.
 *
 * Revision 1.5  2014/04/28 14:53:29  j_novak
 * Minor modif.
 *
 * Revision 1.4  2014/04/28 12:48:13  j_novak
 * Minor modifications.
 *
 * Revision 1.2  2013/12/19 17:05:40  j_novak
 * Corrected a dzpuis problem.
 *
 * Revision 1.1  2013/12/13 16:36:51  j_novak
 * Addition and computation of magnetisation terms in the Einstein equations.
 *
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/et_magnetisation_comp.C,v 1.14 2016/11/01 09:12:59 j_novak Exp $
 *
 */

// Headers C
#include <cstdlib>
#include <cmath>

// Headers Lorene
#include "et_rot_mag.h"
#include "metric.h"
#include "utilitaires.h"
#include "param.h"
#include "proto_f77.h"
#include "unites.h"

namespace Lorene {

  using namespace Unites_mag ;

// Algo du papier de 1995

void Et_magnetisation::magnet_comput(const int adapt_flag,
			       Cmp (*f_j)(const Cmp&, const double), 
			       Param& par_poisson_At, 
			       Param& par_poisson_Avect){
  double relax_mag = 0.5 ;

  int Z = mp.get_mg()->get_nzone();

  bool adapt(adapt_flag) ;
  /****************************************************************
   *  Assertion that all zones have same number of points in theta
   ****************************************************************/
  int nt = mp.get_mg()->get_nt(nzet-1) ; 
  for (int l=0; l<Z; l++) assert(mp.get_mg()->get_nt(l) == nt) ;
  
  Tbl Rsurf(nt) ;
  Rsurf.set_etat_qcq() ;
  mp.r.fait() ;
  mp.tet.fait() ;
  Mtbl* theta = mp.tet.c ;
  const Map_radial* mpr = dynamic_cast<const Map_radial*>(&mp) ;
  assert (mpr != 0x0) ;
  for (int j=0; j<nt; j++) 
    Rsurf.set(j) = mpr->val_r_jk(l_surf()(0,j), xi_surf()(0,j), j, 0) ;
  
  
  // Calcul de A_0t dans l'etoile (conducteur parfait)
  
  Cmp A_0t(- omega * A_phi) ;
  A_0t.annule(nzet,Z-1) ;
  
  Tenseur ATTENS(A_t) ; 
  Tenseur APTENS(A_phi) ;
  Tenseur BMN(-logn) ;
  BMN =  BMN + log(bbb) ;
  BMN.set_std_base() ;
  
  
  Cmp grad1(flat_scalar_prod_desal(ATTENS.gradient_spher(),
				   nphi.gradient_spher())());
  Cmp grad2(flat_scalar_prod_desal(APTENS.gradient_spher(),
				   nphi.gradient_spher())()) ;
  Cmp grad3(flat_scalar_prod_desal(ATTENS.gradient_spher(),
				   BMN.gradient_spher())()
	    + 2*nphi()*flat_scalar_prod_desal(APTENS.gradient_spher(),
					      BMN.gradient_spher())()) ;
  
  Cmp ATANT(A_phi.srdsdt()); // Constrction par copie pour mapping
  
  ATANT.va = ATANT.va.mult_ct().ssint() ;
  
  Cmp ttnphi(tnphi()) ;
  ttnphi.mult_rsint() ;
  Cmp BLAH(- b_car()/(nnn()*nnn())*ttnphi*grad1)  ;
  BLAH -= (1+b_car()/(nnn()*nnn())*tnphi()*tnphi())*grad2  ;
  Cmp nphisr(nphi()) ;
  nphisr.div_r() ;
  Cmp npgrada(2*nphisr*(A_phi.dsdr()+ATANT )) ;
  npgrada.inc2_dzpuis() ;
  BLAH -=  grad3 + npgrada ;
  Cmp gtt(-nnn()*nnn()+b_car()*tnphi()*tnphi()) ;
  Cmp gtphi( - b_car()*ttnphi) ;
  
  // Computation of j_t thanks to Maxwell-Gauss
  // modified to include Magnetisation
  // components of F
  Cmp F01 = 1/(a_car()*nnn()*nnn())*A_0t.dsdr() 
        +   1/(a_car()*nnn()*nnn())*nphi()*A_phi.dsdr() ;

  Cmp F02 =  1/(a_car()*nnn()*nnn())*A_0t.srdsdt()
        +   1/(a_car()*nnn()*nnn())*nphi()*A_phi.srdsdt() ;

  Cmp tmp = A_phi.dsdr() / (bbb() * bbb() * a_car() );
  tmp.div_rsint() ;
  tmp.div_rsint() ;
  Cmp F31 = 1/(a_car()*nnn()*nnn())*nphi()*nphi()*A_phi.dsdr()
    +    1/(a_car()*nnn()*nnn())*nphi()*A_0t.dsdr()  
    +    tmp ;

  tmp = A_phi.srdsdt() / (bbb() * bbb() * a_car() );
  tmp.div_rsint() ;
  tmp.div_rsint() ;
  Cmp F32 = 1/(a_car()*nnn()*nnn())*nphi()*nphi()*A_phi.srdsdt()
    +    1/(a_car()*nnn()*nnn())*nphi()*A_0t.srdsdt()
    +    tmp ;

  Cmp x = get_magnetisation();
  Cmp one_minus_x = 1 - x ;
  one_minus_x.std_base_scal() ;

  tmp = ((BLAH - A_0t.laplacien())*one_minus_x/a_car()
	   - gtphi*j_phi 
	   - gtt*(F01*x.dsdr()+F02*x.srdsdt())
	   - gtphi*(F31*x.dsdr()+F32*x.srdsdt()) ) / gtt ;
 
  tmp.annule(nzet, Z-1) ;
  if (adapt) {
    j_t = tmp ;
  }
  else {
    j_t.allocate_all() ;
    for (int j=0; j<nt; j++) 
      for (int l=0; l<nzet; l++) 
	for (int i=0; i<mp.get_mg()->get_nr(l); i++) 
	  j_t.set(l,0,j,i) = ( (*mp.r.c)(l,0,j,i) > Rsurf(j) ?
			       0. : tmp(l,0,j,i) ) ;
    j_t.annule(nzet,Z-1) ;
  }
  j_t.std_base_scal() ;
  
  // Calcul du courant j_phi
  j_phi = omega * j_t + (ener() + press())*f_j(A_phi, a_j) ;
  j_phi.std_base_scal() ;
  
  // Resolution de Maxwell Ampere (-> A_phi)
  // Calcul des termes sources avec A-t du pas precedent.
  
  Cmp grad4(flat_scalar_prod_desal(APTENS.gradient_spher(),
				   BMN.gradient_spher())());
  
  Tenseur source_tAphi(mp, 1, CON, mp.get_bvect_spher()) ;
  
  source_tAphi.set_etat_qcq() ;
  Cmp tjphi(j_phi) ;
  tjphi.mult_rsint() ;
  Cmp tgrad1(grad1) ;
  tgrad1.mult_rsint() ;
  Cmp d_grad4(grad4) ;
  d_grad4.div_rsint() ;
  source_tAphi.set(0)=0 ;
  source_tAphi.set(1)=0 ;

// modified to include Magnetisation
  Cmp phifac = (F31-nphi()*F01)*x.dsdr()
             + (F32-nphi()*F02)*x.srdsdt() ;
  phifac.mult_rsint();
  source_tAphi.set(2)= -b_car()*a_car()/one_minus_x
      *(tjphi-tnphi()*j_t + phifac)
    + b_car()/(nnn()*nnn())*(tgrad1+tnphi()*grad2)
    + d_grad4 ;
  
  source_tAphi.change_triad(mp.get_bvect_cart());

  // Filtering
  for (int i=0; i<3; i++) {
    Scalar tmp_filter = source_tAphi(i) ;
    tmp_filter.exponential_filter_r(0, 2, 1) ;
    tmp_filter.exponential_filter_ylm(0, 2, 1) ;
    source_tAphi.set(i) = tmp_filter ;
  }

  Tenseur WORK_VECT(mp, 1, CON, mp.get_bvect_cart()) ;
  WORK_VECT.set_etat_qcq() ;
  for (int i=0; i<3; i++) {
    WORK_VECT.set(i) = 0 ; 
  }
  Tenseur WORK_SCAL(mp) ;
  WORK_SCAL.set_etat_qcq() ;
  WORK_SCAL.set() = 0 ;
  
  double lambda_mag = 0. ; // No 3D version !
  
  Tenseur AVECT(source_tAphi) ;
  if (source_tAphi.get_etat() != ETATZERO) {
    
    for (int i=0; i<3; i++) {
      if(source_tAphi(i).dz_nonzero()) {
	assert( source_tAphi(i).get_dzpuis() == 4 ) ; 
      }
      else{
	(source_tAphi.set(i)).set_dzpuis(4) ; 
      }
    }
    
  }

  source_tAphi.poisson_vect(lambda_mag, par_poisson_Avect, AVECT, WORK_VECT,
			    WORK_SCAL) ;
  AVECT.change_triad(mp.get_bvect_spher());
  Cmp A_phi_n(AVECT(2));
  A_phi_n.mult_rsint() ;
  
  // Solution to Maxwell-Ampere : A_1
  // modified to include Magnetisation
  Cmp source_A_1t(-a_car()*( j_t*gtt + j_phi*gtphi 
   + gtt*(F01*x.dsdr()+F02*x.srdsdt())
   + gtphi*(F31*x.dsdr()+F32*x.srdsdt()) )/one_minus_x 
   + BLAH);
  Scalar tmp_filter = source_A_1t ;
  tmp_filter.exponential_filter_r(0, 2, 1) ;
  tmp_filter.exponential_filter_ylm(0, 2, 1) ;
  source_A_1t = tmp_filter ;
  
  Cmp A_1t(mp);
  A_1t = 0 ;
  source_A_1t.poisson(par_poisson_At, A_1t) ;

  int L = mp.get_mg()->get_nt(0);
  
  Tbl MAT(L,L) ;
  Tbl MAT_PHI(L,L);
  Tbl VEC(L) ;
  
  MAT.set_etat_qcq() ;
  VEC.set_etat_qcq() ;
  MAT_PHI.set_etat_qcq() ;
  
  Tbl leg(L,2*L) ;
  leg.set_etat_qcq() ;
  
  Cmp psi(mp);
  Cmp psi2(mp);
  psi.allocate_all() ;
  psi2.allocate_all() ;
  
  for (int p=0; p<mp.get_mg()->get_np(0); p++) {
    // leg[k,l] : legendre_l(cos(theta_k))
    // Construction par recurrence de degre 2
    for(int k=0;k<L;k++){
      for(int l=0;l<2*L;l++){
	
	if(l==0) leg.set(k,l)=1. ;
	if(l==1) leg.set(k,l)=cos((*theta)(l_surf()(p,k),p,k,0)) ;
	if(l>=2) leg.set(k,l) = double(2*l-1)/double(l)  
		   * cos((*theta)(l_surf()(p,k),p,k,0))
		   * leg(k,l-1)-double(l-1)/double(l)*leg(k,l-2) ;
      }
    }
    
    for(int k=0;k<L;k++){
      
      // Valeurs a la surface trouvees via va.val_point_jk(l,xisurf,k,p)
      
      VEC.set(k) = A_0t.va.val_point_jk(l_surf()(p,k), xi_surf()(p,k), k, p)
	-A_1t.va.val_point_jk(l_surf()(p,k), xi_surf()(p,k), k, p);
      
      for(int l=0;l<L;l++) MAT.set(l,k) = leg(k,2*l)/pow(Rsurf(k),2*l+1);
      
    }
    // appel fortran : 
    
    int* IPIV=new int[L] ;
    int INFO ;
    
    Tbl MAT_SAVE(MAT) ;
    Tbl VEC2(L) ;
    VEC2.set_etat_qcq() ;
    int un = 1 ;
    
    F77_dgesv(&L, &un, MAT.t, &L, IPIV, VEC.t, &L, &INFO) ; 
    
    // coeffs a_l dans VEC
    
    for(int k=0;k<L;k++) {VEC2.set(k)=1. ; }
    
    F77_dgesv(&L, &un, MAT_SAVE.t, &L, IPIV, VEC2.t, &L, &INFO) ;
    
    delete [] IPIV ;
    
    for(int nz=0;nz < Z; nz++){
      for(int i=0;i< mp.get_mg()->get_nr(nz);i++){
	for(int k=0;k<L;k++){
	  psi.set(nz,p,k,i) = 0. ;
	  psi2.set(nz,p,k,i) = 0. ;
	  for(int l=0;l<L;l++){
	    psi.set(nz,p,k,i) += VEC(l)*leg(k,2*l) / 
	      pow((*mp.r.c)(nz,p,k,i),2*l+1);
	    psi2.set(nz,p,k,i) += VEC2(l)*leg(k,2*l)/
	      pow((*mp.r.c)(nz, p, k,i),2*l+1);
	  }
	}
      }
    }
  }
  psi.std_base_scal() ;
  psi2.std_base_scal() ;
  
  assert(psi.get_dzpuis() == 0) ;
  int dif = A_1t.get_dzpuis() ;
  if (dif > 0) {
    for (int d=0; d<dif; d++) A_1t.dec_dzpuis() ;
  }
  
  if (adapt) {
    Cmp A_t_ext(A_1t + psi) ;
    A_t_ext.annule(0,nzet-1) ;
    A_0t += A_t_ext ;
  }
  else {
    tmp = A_0t ;
    A_0t.allocate_all() ;
    for (int j=0; j<nt; j++) 
      for (int l=0; l<Z; l++) 
	for (int i=0; i<mp.get_mg()->get_nr(l); i++) 
	  A_0t.set(l,0,j,i) = ( (*mp.r.c)(l,0,j,i) > Rsurf(j) ?
				A_1t(l,0,j,i) + psi(l,0,j,i) : tmp(l,0,j,i) ) ;
  } 
  A_0t.std_base_scal() ;
  
  tmp_filter = A_0t ;
  tmp_filter.exponential_filter_r(0, 2, 1) ;
  tmp_filter.exponential_filter_ylm(0, 2, 1) ;
  A_0t = tmp_filter ;

  Valeur** asymp = A_0t.asymptot(1) ;
  
  double Q_0 = -4*M_PI*(*asymp[1])(Z-1,0,0,0) ; // utilise A_0t plutot que E
  delete asymp[0] ;
  delete asymp[1] ;
  
  delete [] asymp ;
  
  asymp = psi2.asymptot(1) ;
  
  double Q_2 = -4*M_PI*(*asymp[1])(Z-1,0,0,0)  ; // A_2t = psi2 a l'infini
  delete asymp[0] ;
  delete asymp[1] ;
  
  delete [] asymp ;
  
  // solution definitive de A_t:
  
  double C = (Q-Q_0)/Q_2 ;
  
  assert(psi2.get_dzpuis() == 0) ;
  dif = A_0t.get_dzpuis() ;
  if (dif > 0) {
    for (int d=0; d<dif; d++) A_0t.dec_dzpuis() ;
  }
  Cmp A_t_n(mp) ;
  if (adapt) {
    A_t_n = A_0t + C ;
    Cmp A_t_ext(A_0t + C*psi2) ;
    A_t_ext.annule(0,nzet-1) ;
    A_t_n.annule(nzet,Z-1) ;
    A_t_n += A_t_ext ;
  }
  else {
    A_t_n.allocate_all() ;
    for (int j=0; j<nt; j++) 
      for (int l=0; l<Z; l++) 
	for (int i=0; i<mp.get_mg()->get_nr(l); i++) 
	  A_t_n.set(l,0,j,i) = ( (*mp.r.c)(l,0,j,i) > Rsurf(j) ?
				 A_0t(l,0,j,i) + C*psi2(l,0,j,i) : 
				 A_0t(l,0,j,i) + C ) ;    
  }
  A_t_n.std_base_scal() ;
  tmp_filter = A_t_n ;
  tmp_filter.exponential_filter_r(0, 2, 1) ;
  tmp_filter.exponential_filter_ylm(0, 2, 1) ;
  A_t_n = tmp_filter ;
  
  asymp = A_t_n.asymptot(1) ;
  
  delete asymp[0] ;
  delete asymp[1] ;
  
  delete [] asymp ;
  A_t = relax_mag*A_t_n + (1.-relax_mag)*A_t ;
  A_phi = relax_mag*A_phi_n + (1. - relax_mag)*A_phi ;

}


void Et_magnetisation::MHD_comput() {
  // Computes the E-M terms of the stress-energy tensor...
  
  Tenseur ATTENS(A_t) ;

  Tenseur APTENS(A_phi) ;
  
  Tenseur ApAp ( flat_scalar_prod_desal(APTENS.gradient_spher(),
					APTENS.gradient_spher())() );
  Tenseur ApAt ( flat_scalar_prod_desal(APTENS.gradient_spher(),
					ATTENS.gradient_spher())() );
  Tenseur AtAt ( flat_scalar_prod_desal(ATTENS.gradient_spher(),
					ATTENS.gradient_spher())() );

  if (ApAp.get_etat() != ETATZERO) {
    ApAp.set().div_rsint() ;
    ApAp.set().div_rsint() ;
  }
  if (ApAt.get_etat() != ETATZERO) 
    ApAt.set().div_rsint() ;
  
  E_em = 0.5*mu0 * ( 1/(a_car*nnn*nnn) * (AtAt + 2*tnphi*ApAt)
	      + ( (tnphi*tnphi/(a_car*nnn*nnn)) + 1/(a_car*b_car) )*ApAp );
  Jp_em = -mu0 * (ApAt + tnphi*ApAp) /(a_car*nnn) ;
  if (Jp_em.get_etat() != ETATZERO) Jp_em.set().mult_rsint() ;
  Srr_em = 0 ;
  // Stt_em = -Srr_em
  Spp_em = E_em ;

  // ... and those corresponding to the magnetization.
  Tenseur Efield = Elec() ;
  Tenseur Bfield = Magn() ;

  Scalar EiEi ( flat_scalar_prod(Efield, Efield)() ) ;
  Scalar BiBi ( flat_scalar_prod(Bfield, Bfield)() ) ;

  Vector U_up(mp, CON, mp.get_bvect_cart()) ;
  for (int i=1; i<=3; i++) 
    U_up.set(i) = u_euler(i-1) ;
  U_up.change_triad(mp.get_bvect_spher()) ;

  Sym_tensor gamij(mp, COV, mp.get_bvect_spher()) ;
  for (int i=1; i<=3; i++)
    for (int j=1; j<i; j++) {
      gamij.set(i,j) = 0 ;
    }
  gamij.set(1,1) = a_car() ;
  gamij.set(2,2) = a_car() ;
  gamij.set(3,3) = b_car() ;
  Metric met(gamij) ;
  Vector Ui = U_up.down(0, met) ;

  Scalar fac = sqrt(a_car()) ;
  Vector B_up(mp, CON, mp.get_bvect_spher()) ;
  B_up.set(1) = Scalar(Bfield(0)) / fac ;
  B_up.set(2) = Scalar(Bfield(1)) / fac ;
  B_up.set(3) = 0 ;
  Vector Bi = B_up.down(0, met) ;

  fac = Scalar(gam_euler()*gam_euler()) ;

  E_I = get_magnetisation() * EiEi / mu0 ;

  J_I = get_magnetisation() * BiBi * Ui / mu0 ;
  Sij_I = get_magnetisation() 
    * ( (BiBi / fac) * gamij  + BiBi*Ui*Ui - Bi*Bi / fac ) / mu0 ;

  for (int i=1; i<=3; i++)
    for (int j=i; j<=3; j++)
      Sij_I.set(i,j).set_dzpuis(0) ;

}

			//----------------------------//
			//	Gravitational mass    //
			//----------------------------//

double Et_magnetisation::mass_g() const {

  if (p_mass_g == 0x0) {    // a new computation is required
    
    if (relativistic) {
      
      // Magnetisation: S_{rr} + S_{\theta\theta}
      Tenseur SrrplusStt( Cmp(Sij_I(1, 1) + Sij_I(2, 2)) ) ; 
      SrrplusStt = SrrplusStt / a_car ; // S^r_r + S^\theta_\theta
      
      Tenseur Spp (Cmp(Sij_I(3, 3))) ; // Magnetisation: S_{\phi\phi}
      Spp = Spp / b_car ; // S^\phi_\phi

      Cmp temp(E_I) ;
      Tenseur E_i (temp) ;
      Tenseur J_i (Cmp(J_I(3))) ;
      
      Tenseur source = nnn * (ener_euler + E_em + E_i 
			      + s_euler + Spp_em + SrrplusStt + Spp) + 
	nphi * (Jp_em + J_i) 
	+ 2 * bbb * (ener_euler + press) * tnphi * uuu ;
      
      source = a_car * bbb * source ;
      
      source.set_std_base() ;
      
      p_mass_g = new double( source().integrale() ) ;


    }
    else{  // Newtonian case 
      p_mass_g = new double( mass_b() ) ;   // in the Newtonian case
      //  M_g = M_b
    }
  }
    
  return *p_mass_g ; 

} 

			//----------------------------//
			//	Angular momentum      //
			//----------------------------//

double Et_magnetisation::angu_mom() const {

  if (p_angu_mom == 0x0) {    // a new computation is required
	
    Cmp dens = uuu() ; 

    dens.mult_r() ;			//  Multiplication by
    dens.va = (dens.va).mult_st() ;	//    r sin(theta)

    if (relativistic) {
      dens = a_car() * (b_car() * (ener_euler() + press()) 
			* dens + bbb() * (Jp_em() + Cmp(J_I(3)) ) ) ; 
    }
    else {    // Newtonian case 
      dens = nbar() * dens ; 
    }

    dens.std_base_scal() ; 

    p_angu_mom = new double( dens.integrale() ) ;
    
  }
    
  return *p_angu_mom ; 

}

			//----------------------------//
			//	     GRV2	      //
			//----------------------------//

double Et_magnetisation::grv2() const {

    if (p_grv2 == 0x0) {    // a new computation is required
	
      // To get qpig:	
      using namespace Unites ;

      Tenseur Spp (Cmp(Sij_I(3, 3))) ; //S_{\phi\phi}
      Spp = Spp / b_car ; // S^\phi_\phi

      Tenseur sou_m =  2 * qpig * a_car * (press + (ener_euler+press)
					   * uuu*uuu + Spp) ;
      
      Tenseur sou_q =   2 * qpig * a_car * Spp_em + 1.5 * ak_car
	- flat_scalar_prod(logn.gradient_spher(), logn.gradient_spher() ) ;

      p_grv2 = new double( double(1) - lambda_grv2(sou_m(), sou_q()) ) ; 

    }
    
    return *p_grv2 ; 

}


			//----------------------------//
			//	     GRV3	      //
			//----------------------------//

double Et_magnetisation::grv3(ostream* ost) const {

    if (p_grv3 == 0x0) {    // a new computation is required

	// To get qpig:	
      using namespace Unites ;
      
      Tenseur source(mp) ; 
	
	// Gravitational term [cf. Eq. (43) of Gourgoulhon & Bonazzola
	// ------------------	    Class. Quantum Grav. 11, 443 (1994)]

	if (relativistic) {
	    Tenseur alpha = dzeta - logn ; 
	    Tenseur beta = log( bbb ) ; 
	    beta.set_std_base() ; 
	    
	    source = 0.75 * ak_car 
		     - flat_scalar_prod(logn.gradient_spher(),
					logn.gradient_spher() )
		     + 0.5 * flat_scalar_prod(alpha.gradient_spher(),
					      beta.gradient_spher() ) ; 
	    
	    Cmp aa = alpha() - 0.5 * beta() ; 
	    Cmp daadt = aa.srdsdt() ;	// 1/r d/dth
	    
	    // What follows is valid only for a mapping of class Map_radial : 
	    const Map_radial* mpr = dynamic_cast<const Map_radial*>(&mp) ; 
	    if (mpr == 0x0) {
		cout << "Etoile_rot::grv3: the mapping does not belong"
		     << " to the class Map_radial !" << endl ; 
		abort() ; 
	    }
		
	    // Computation of 1/tan(theta) * 1/r daa/dtheta
	    if (daadt.get_etat() == ETATQCQ) {
		Valeur& vdaadt = daadt.va ; 
		vdaadt = vdaadt.ssint() ;	// division by sin(theta)
		vdaadt = vdaadt.mult_ct() ;	// multiplication by cos(theta)
	    }
	    
	    Cmp temp = aa.dsdr() + daadt ; 
	    temp = ( bbb() - a_car()/bbb() ) * temp ; 
	    temp.std_base_scal() ; 
	    
	    // Division by r 
	    Valeur& vtemp = temp.va ; 
	    vtemp = vtemp.sx() ;    // division by xi in the nucleus
				    // Id in the shells
				    // division by xi-1 in the ZEC
	    vtemp = (mpr->xsr) * vtemp ; // multiplication by xi/r in the nucleus
					 //		  by 1/r in the shells
					 //		  by r(xi-1) in the ZEC

	    // In the ZEC, a multiplication by r has been performed instead
	    //   of the division: 			
	    temp.set_dzpuis( temp.get_dzpuis() + 2 ) ;  
	    
	    source = bbb() * source() + 0.5 * temp ; 

	}
	else{
	    source = - 0.5 * flat_scalar_prod(logn.gradient_spher(),
					      logn.gradient_spher() ) ; 
	}
	
	source.set_std_base() ; 

	double int_grav = source().integrale() ; 

	// Matter term
	// -----------
	
	if (relativistic) {   
 
	  // S_{rr} + S_{\theta\theta}
	  Tenseur SrrplusStt( Cmp(Sij_I(1, 1) + Sij_I(2, 2)) ) ; 
	  SrrplusStt = SrrplusStt / a_car ; // S^r_r + S^\theta_\theta
	  
	  Tenseur Spp (Cmp(Sij_I(3, 3))) ; //S_{\phi\phi}
	  Spp = Spp / b_car ; // S^\phi_\phi
  
	    source  = qpig * a_car * bbb * ( s_euler + Spp_em + SrrplusStt + Spp ) ;
	}
	else{
	    source = qpig * ( 3 * press + nbar * uuu * uuu ) ; 
	}

	source.set_std_base() ; 

	double int_mat = source().integrale() ; 

	// Virial error
	// ------------
	if (ost != 0x0) {
	    *ost << "Et_magnetisation::grv3 : gravitational term : " << int_grav 
		 << endl ;
	    *ost << "Et_magnetisation::grv3 : matter term :        " << int_mat 
		 << endl ;
	}

	p_grv3 = new double( (int_grav + int_mat) / int_mat ) ; 	 

    }
    
    return *p_grv3 ; 

}

			//----------------------------//
			//     Quadrupole moment      //
			//----------------------------//

  double Et_magnetisation::mom_quad_old() const {
    
    if (p_mom_quad_old == 0x0) {    // a new computation is required
      
      // To get qpig:	
      using namespace Unites ;
      
      // Source for of the Poisson equation for nu
      // -----------------------------------------
      
      Tenseur source(mp) ; 
      
      if (relativistic) {
	// S_{rr} + S_{\theta\theta}
	Tenseur SrrplusStt( Cmp(Sij_I(1, 1) + Sij_I(2, 2)) ) ; 
	SrrplusStt = SrrplusStt / a_car ; // S^r_r + S^\theta_\theta
	
	Tenseur Spp (Cmp(Sij_I(3, 3))) ; //S_{\phi\phi}
	Spp = Spp / b_car ; // S^\phi_\phi
	
	Cmp temp(E_I) ;
	Tenseur E_i(temp) ;
	
	Tenseur beta = log(bbb) ; 
	beta.set_std_base() ; 
	source =  qpig * a_car *( ener_euler + E_em + E_i
				  + s_euler + Spp_em + SrrplusStt + Spp) 
	  + ak_car - flat_scalar_prod(logn.gradient_spher(), 
		     logn.gradient_spher() + beta.gradient_spher()) ; 
      }
      else {
	source = qpig * nbar ; 
      }
      source.set_std_base() ; 	
      
      // Multiplication by -r^2 P_2(cos(theta))
      //  [cf Eq.(7) of Salgado et al. Astron. Astrophys. 291, 155 (1994) ]
      // ------------------------------------------------------------------
      
      // Multiplication by r^2 : 
      // ----------------------
      Cmp& csource = source.set() ; 
      csource.mult_r() ; 
      csource.mult_r() ; 
      if (csource.check_dzpuis(2)) {
	csource.inc2_dzpuis() ; 
      }
      
      // Muliplication by cos^2(theta) :
      // -----------------------------
      Cmp temp = csource ; 
      
      // What follows is valid only for a mapping of class Map_radial : 
      assert( dynamic_cast<const Map_radial*>(&mp) != 0x0 ) ; 
      
      if (temp.get_etat() == ETATQCQ) {
	Valeur& vtemp = temp.va ; 
	vtemp = vtemp.mult_ct() ;	// multiplication by cos(theta)
	vtemp = vtemp.mult_ct() ;	// multiplication by cos(theta)
      }
      
      // Muliplication by -P_2(cos(theta)) :
      // ----------------------------------
      source = 0.5 * source() - 1.5 * temp ; 
      
      // Final result
      // ------------
      p_mom_quad_old = new double( - source().integrale() / qpig ) ; 	  
    }
    return *p_mom_quad_old ; 
  }


  double Et_magnetisation::mom_quad_Bo() const {
    
    using namespace Unites ;
    
    if (p_mom_quad_Bo == 0x0) {    // a new computation is required

      // S_{rr} + S_{\theta\theta} =  A^2*(S^r_r + S^\theta_\theta)
      Tenseur SrrplusStt( Cmp(Sij_I(1, 1) + Sij_I(2, 2)) ) ; 
      
      Cmp dens = a_car() * press() ;
      dens = bbb() * nnn() * (SrrplusStt() + 2*dens) ; 
      dens.mult_rsint() ;
      dens.std_base_scal() ; 
      
      p_mom_quad_Bo = new double( - 16. * dens.integrale() / qpig  ) ;  
    }
    return *p_mom_quad_Bo ;  
  }



}