File: et_rot_diff_equil.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (911 lines) | stat: -rw-r--r-- 27,888 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/*
 * Function Et_rot_diff::equilibrium
 *
 * (see file etoile.h for documentation)
 *
 */

/*
 *   Copyright (c) 2001-2003 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char et_rot_diff_equil_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_diff_equil.C,v 1.9 2014/10/13 08:52:57 j_novak Exp $" ;

/*
 * $Id: et_rot_diff_equil.C,v 1.9 2014/10/13 08:52:57 j_novak Exp $
 * $Log: et_rot_diff_equil.C,v $
 * Revision 1.9  2014/10/13 08:52:57  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.8  2014/10/06 15:13:08  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.7  2005/10/05 15:15:30  j_novak
 * Added a Param* as parameter of Etoile_rot::equilibrium
 *
 * Revision 1.6  2004/03/25 10:29:05  j_novak
 * All LORENE's units are now defined in the namespace Unites (in file unites.h).
 *
 * Revision 1.5  2003/11/19 22:01:57  e_gourgoulhon
 * -- Relaxation on logn and dzeta performed only if mer >= 10.
 * -- err_grv2 is now evaluated also in the Newtonian case.
 *
 * Revision 1.4  2003/10/27 10:54:43  e_gourgoulhon
 * Changed local variable name lambda_grv2 to lbda_grv2 in order not
 * to shadow method name.
 *
 * Revision 1.3  2003/05/25 19:59:02  e_gourgoulhon
 * Added the possibility to choose the factor a = R_eq / R0, instead of R0
 * in the differential rotation law.
 *
 * Revision 1.2  2002/10/16 14:36:36  j_novak
 * Reorganization of #include instructions of standard C++, in order to
 * use experimental version 3 of gcc.
 *
 * Revision 1.1.1.1  2001/11/20 15:19:28  e_gourgoulhon
 * LORENE
 *
 * Revision 1.1  2001/10/19  08:18:16  eric
 * Initial revision
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_diff_equil.C,v 1.9 2014/10/13 08:52:57 j_novak Exp $
 *
 */



// Headers C
#include <cmath>

// Headers Lorene
#include "et_rot_diff.h"
#include "param.h"

#include "graphique.h"
#include "utilitaires.h"
#include "unites.h"	    

namespace Lorene {
void Et_rot_diff::equilibrium(double ent_c, double omega_c0, double fact_omega, 
			     int nzadapt, const Tbl& ent_limit, 
			     const Itbl& icontrol,
			     const Tbl& control, double mbar_wanted, 
			     double aexp_mass, Tbl& diff, Param*) {
			     
    // Fundamental constants and units
    // -------------------------------
  using namespace Unites ;
    
    // For the display 
    // ---------------
    char display_bold[]="x[1m" ; display_bold[0] = 27 ;
    char display_normal[] = "x[0m" ; display_normal[0] = 27 ;

    // Grid parameters
    // ---------------
    
    const Mg3d* mg = mp.get_mg() ; 
    int nz = mg->get_nzone() ;	    // total number of domains
    int nzm1 = nz - 1 ; 
    
    // The following is required to initialize mp_prev as a Map_et:
    Map_et& mp_et = dynamic_cast<Map_et&>(mp) ; 
        
    // Index of the point at phi=0, theta=pi/2 at the surface of the star:
    assert(mg->get_type_t() == SYM) ; 
    int l_b = nzet - 1 ; 
    int i_b = mg->get_nr(l_b) - 1 ; 
    int j_b = mg->get_nt(l_b) - 1 ; 
    int k_b = 0 ; 
    
    // Value of the enthalpy defining the surface of the star
    double ent_b = ent_limit(nzet-1) ;
    
    // Parameters to control the iteration
    // -----------------------------------
    
    int mer_max = icontrol(0) ; 
    int mer_rot = icontrol(1) ;
    int mer_change_omega = icontrol(2) ; 
    int mer_fix_omega = icontrol(3) ; 
    int mer_mass = icontrol(4) ; 
    int mermax_poisson = icontrol(5) ; 
    int mer_triax = icontrol(6) ; 
    int delta_mer_kep = icontrol(7) ; 

    // Protections:
    if (mer_change_omega < mer_rot) {
	cout << "Et_rot_diff::equilibrium: mer_change_omega < mer_rot !" << endl ;
	cout << " mer_change_omega = " << mer_change_omega << endl ; 
	cout << " mer_rot = " << mer_rot << endl ; 
	abort() ; 
    }
    if (mer_fix_omega < mer_change_omega) {
	cout << "Et_rot_diff::equilibrium: mer_fix_omega < mer_change_omega !" 
	     << endl ;
	cout << " mer_fix_omega = " << mer_fix_omega << endl ; 
	cout << " mer_change_omega = " << mer_change_omega << endl ; 
	abort() ; 
    }

    // In order to converge to a given baryon mass, shall the central
    // enthalpy be varied or Omega ?
    bool change_ent = true ; 
    if (mer_mass < 0) {
	change_ent = false ; 
	mer_mass = abs(mer_mass) ;
    }

    double precis = control(0) ; 
    double omega_ini = control(1) ; 
    double relax = control(2) ;
    double relax_prev = double(1) - relax ;  
    double relax_poisson = control(3) ; 
    double thres_adapt = control(4) ; 
    double ampli_triax = control(5) ; 
    double precis_adapt = control(6) ; 


    // Error indicators
    // ----------------
    
    diff.set_etat_qcq() ; 
    double& diff_ent = diff.set(0) ; 
    double& diff_nuf = diff.set(1) ; 
    double& diff_nuq = diff.set(2) ; 
//    double& diff_dzeta = diff.set(3) ; 
//    double& diff_ggg = diff.set(4) ; 
    double& diff_shift_x = diff.set(5) ; 
    double& diff_shift_y = diff.set(6) ; 
    double& vit_triax = diff.set(7) ; 
    
    // Parameters for the function Map_et::adapt
    // -----------------------------------------
    
    Param par_adapt ; 
    int nitermax = 100 ;  
    int niter ; 
    int adapt_flag = 1 ;    //  1 = performs the full computation, 
			    //  0 = performs only the rescaling by 
			    //      the factor alpha_r
    int nz_search = nzet + 1 ;  // Number of domains for searching the enthalpy
				//  isosurfaces
    double alpha_r ; 
    double reg_map = 1. ; // 1 = regular mapping, 0 = contracting mapping

    par_adapt.add_int(nitermax, 0) ; // maximum number of iterations to
				     // locate zeros by the secant method
    par_adapt.add_int(nzadapt, 1) ; // number of domains where the adjustment 
				    // to the isosurfaces of ent is to be 
				    // performed
    par_adapt.add_int(nz_search, 2) ;	// number of domains to search for
					// the enthalpy isosurface
    par_adapt.add_int(adapt_flag, 3) ; //  1 = performs the full computation, 
				       //  0 = performs only the rescaling by 
				       //      the factor alpha_r
    par_adapt.add_int(j_b, 4) ; //  theta index of the collocation point 
			        //  (theta_*, phi_*)
    par_adapt.add_int(k_b, 5) ; //  theta index of the collocation point 
			        //  (theta_*, phi_*)

    par_adapt.add_int_mod(niter, 0) ;  //  number of iterations actually used in 
				       //  the secant method
    
    par_adapt.add_double(precis_adapt, 0) ; // required absolute precision in 
					     // the determination of zeros by 
					     // the secant method
    par_adapt.add_double(reg_map, 1)	;  // 1. = regular mapping, 0 = contracting mapping
    
    par_adapt.add_double(alpha_r, 2) ;	// factor by which all the radial 
					   // distances will be multiplied 
    	   
    par_adapt.add_tbl(ent_limit, 0) ;	// array of values of the field ent 
				        // to define the isosurfaces. 			   

    // Parameters for the function Map_et::poisson for nuf
    // ----------------------------------------------------

    double precis_poisson = 1.e-16 ;     

    Param par_poisson_nuf ; 
    par_poisson_nuf.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson_nuf.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson_nuf.add_double(precis_poisson, 1) ; // required precision
    par_poisson_nuf.add_int_mod(niter, 0) ;  //  number of iterations actually used 
    par_poisson_nuf.add_cmp_mod( ssjm1_nuf ) ; 
					   
    Param par_poisson_nuq ; 
    par_poisson_nuq.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson_nuq.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson_nuq.add_double(precis_poisson, 1) ; // required precision
    par_poisson_nuq.add_int_mod(niter, 0) ;  //  number of iterations actually used 
    par_poisson_nuq.add_cmp_mod( ssjm1_nuq ) ; 
					   
    Param par_poisson_tggg ; 
    par_poisson_tggg.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson_tggg.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson_tggg.add_double(precis_poisson, 1) ; // required precision
    par_poisson_tggg.add_int_mod(niter, 0) ;  //  number of iterations actually used 
    par_poisson_tggg.add_cmp_mod( ssjm1_tggg ) ; 
    double lambda_tggg ;
    par_poisson_tggg.add_double_mod( lambda_tggg ) ; 
    
    Param par_poisson_dzeta ; 
    double lbda_grv2 ;
    par_poisson_dzeta.add_double_mod( lbda_grv2 ) ; 
 					   
    // Parameters for the function Tenseur::poisson_vect
    // -------------------------------------------------

    Param par_poisson_vect ; 

    par_poisson_vect.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson_vect.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson_vect.add_double(precis_poisson, 1) ; // required precision
    par_poisson_vect.add_cmp_mod( ssjm1_khi ) ; 
    par_poisson_vect.add_tenseur_mod( ssjm1_wshift ) ; 
    par_poisson_vect.add_int_mod(niter, 0) ;   

 					   
    // Initializations
    // ---------------

    // Initial central angular velocity
    double omega_c = 0 ; 
  
    double accrois_omega = (omega_c0 - omega_ini) / 
			    double(mer_fix_omega - mer_change_omega) ; 


    update_metric() ;	// update of the metric coefficients

    equation_of_state() ;	// update of the density, pressure, etc...
    
    hydro_euler() ;	// update of the hydro quantities relative to the 
			//  Eulerian observer

    // Quantities at the previous step : 	
    Map_et mp_prev = mp_et ; 
    Tenseur ent_prev = ent ;	    
    Tenseur logn_prev = logn ;	    
    Tenseur dzeta_prev = dzeta ;	    
    
    // Creation of uninitialized tensors:
    Tenseur source_nuf(mp) ;    // source term in the equation for nuf
    Tenseur source_nuq(mp) ;    // source term in the equation for nuq
    Tenseur source_dzf(mp) ;	// matter source term in the eq. for dzeta
    Tenseur source_dzq(mp) ;	// quadratic source term in the eq. for dzeta
    Tenseur source_tggg(mp) ;	// source term in the eq. for tggg
    Tenseur source_shift(mp, 1, CON, mp.get_bvect_cart()) ;  
						    // source term for shift
    Tenseur mlngamma(mp) ;	// centrifugal potential
    
    // Preparations for the Poisson equations:
    // --------------------------------------
    if (nuf.get_etat() == ETATZERO) {
	nuf.set_etat_qcq() ; 
	nuf.set() = 0 ; 
    }
    
    if (relativistic) {
	if (nuq.get_etat() == ETATZERO) {
	    nuq.set_etat_qcq() ; 
	    nuq.set() = 0 ; 
	}

	if (tggg.get_etat() == ETATZERO) {
	    tggg.set_etat_qcq() ; 
	    tggg.set() = 0 ; 
	}
	
	if (dzeta.get_etat() == ETATZERO) {
	    dzeta.set_etat_qcq() ; 
	    dzeta.set() = 0 ; 
	}
    }
		    
    ofstream fichconv("convergence.d") ;    // Output file for diff_ent
    fichconv << "#     diff_ent     GRV2       max_triax      vit_triax" << endl ; 
    
    ofstream fichfreq("frequency.d") ;    // Output file for  omega_c
    fichfreq << "#       f [Hz]" << endl ; 
    
    ofstream fichevol("evolution.d") ;    // Output file for various quantities
    fichevol << 
    "#       |dH/dr_eq/dH/dr_pole|      r_pole/r_eq	ent_c" 
    << endl ; 
    
    diff_ent = 1 ; 
    double err_grv2 = 1 ; 
    double max_triax_prev = 0 ;	    // Triaxial amplitude at previous step
    
    //=========================================================================
    // 			Start of iteration
    //=========================================================================

    for(int mer=0 ; (diff_ent > precis) && (mer<mer_max) ; mer++ ) {

 	cout << "-----------------------------------------------" << endl ;
	cout << "step: " << mer << endl ;
	cout << "diff_ent = " << display_bold << diff_ent << display_normal
	     << endl ;    
	cout << "err_grv2 = " << err_grv2 << endl ;    
	fichconv << mer ;
	fichfreq << mer ;
	fichevol << mer ;

	if (mer >= mer_rot) {
	
	    if (mer < mer_change_omega) {
		omega_c = omega_ini ; 
	    }
	    else {
		if (mer <= mer_fix_omega) {
		    omega_c = omega_ini + accrois_omega * 
			      (mer - mer_change_omega) ;
		}
	    }

	}

	//-----------------------------------------------
	//  Sources of the Poisson equations
	//-----------------------------------------------
	
	// Source for nu
	// -------------
	Tenseur beta = log(bbb) ; 
	beta.set_std_base() ; 

	if (relativistic) {
	    source_nuf =  qpig * a_car *( ener_euler + s_euler ) ; 

	    source_nuq = ak_car - flat_scalar_prod(logn.gradient_spher(), 
			logn.gradient_spher() + beta.gradient_spher()) ; 
	}
	else {
	    source_nuf = qpig * nbar ; 

	    source_nuq = 0 ; 
	}
	source_nuf.set_std_base() ; 	
	source_nuq.set_std_base() ; 	

	// Source for dzeta
	// ----------------
	source_dzf = 2 * qpig * a_car * (press + (ener_euler+press) * uuu*uuu ) ;
	source_dzf.set_std_base() ; 
  
	source_dzq = 1.5 * ak_car - flat_scalar_prod(logn.gradient_spher(),
						     logn.gradient_spher() ) ;	    
	source_dzq.set_std_base() ; 	
	
	// Source for tggg
	// ---------------
	
	source_tggg = 4 * qpig * nnn * a_car * bbb * press ;
	source_tggg.set_std_base() ; 
	
	(source_tggg.set()).mult_rsint() ; 
	

	// Source for shift
	// ----------------
	    
	// Matter term: 
	source_shift = (-4*qpig) * nnn * a_car  * (ener_euler + press)
				* u_euler ;

	// Quadratic terms:
	Tenseur vtmp =  6 * beta.gradient_spher() - 2 * logn.gradient_spher() ;
	vtmp.change_triad(mp.get_bvect_cart()) ; 

	Tenseur squad  = nnn * flat_scalar_prod(tkij, vtmp) ;     

	// The addition of matter terms and quadratic terms is performed
	//  component by component because u_euler is contravariant,
	//  while squad is covariant. 
		
	if (squad.get_etat() == ETATQCQ) {
	    for (int i=0; i<3; i++) {
		source_shift.set(i) += squad(i) ; 
	    }
	}

	source_shift.set_std_base() ; 	

	//----------------------------------------------
	// Resolution of the Poisson equation for nuf 
	//----------------------------------------------

	source_nuf().poisson(par_poisson_nuf, nuf.set()) ; 
	
	cout << "Test of the Poisson equation for nuf :" << endl ; 
	Tbl err = source_nuf().test_poisson(nuf(), cout, true) ; 
	diff_nuf = err(0, 0) ; 
	
	//---------------------------------------
	// Triaxial perturbation of nuf
	//---------------------------------------
	
	if (mer == mer_triax) {
	
	    if ( mg->get_np(0) == 1 ) {
		cout << 
		"Et_rot_diff::equilibrium: np must be stricly greater than 1"
		<< endl << " to set a triaxial perturbation !" << endl ; 
		abort() ; 
	    }
	
	    const Coord& phi = mp.phi ; 
	    const Coord& sint = mp.sint ; 
	    Cmp perturb(mp) ; 
	    perturb = 1 + ampli_triax * sint*sint * cos(2*phi) ;
	    nuf.set() = nuf() * perturb ;  
	    
	    nuf.set_std_base() ;    // set the bases for spectral expansions
				    //  to be the standard ones for a 
				    //  scalar field

	}
	
	// Monitoring of the triaxial perturbation
	// ---------------------------------------
	
	Valeur& va_nuf = nuf.set().va ; 
	va_nuf.coef() ;		// Computes the spectral coefficients
	double max_triax = 0 ; 

	if ( mg->get_np(0) > 1 ) {

	    for (int l=0; l<nz; l++) {	// loop on the domains
		for (int j=0; j<mg->get_nt(l); j++) {
		    for (int i=0; i<mg->get_nr(l); i++) {
		
			// Coefficient of cos(2 phi) : 
			double xcos2p = (*(va_nuf.c_cf))(l, 2, j, i) ; 

			// Coefficient of sin(2 phi) : 
			double xsin2p = (*(va_nuf.c_cf))(l, 3, j, i) ; 
		    
			double xx = sqrt( xcos2p*xcos2p + xsin2p*xsin2p ) ; 
		    
			max_triax = ( xx > max_triax ) ? xx : max_triax ; 		    
		    }
		} 
	    }
	    
	}
	
	cout << "Triaxial part of nuf : " << max_triax << endl ; 

	if (relativistic) {
	    
	    //----------------------------------------------
	    // Resolution of the Poisson equation for nuq 
	    //----------------------------------------------

	    source_nuq().poisson(par_poisson_nuq, nuq.set()) ; 
	    
	    cout << "Test of the Poisson equation for nuq :" << endl ; 
	    err = source_nuq().test_poisson(nuq(), cout, true) ;
	    diff_nuq = err(0, 0) ; 
	
	    //---------------------------------------------------------
	    // Resolution of the vector Poisson equation for the shift
	    //---------------------------------------------------------


	    if (source_shift.get_etat() != ETATZERO) {

		for (int i=0; i<3; i++) {
		    if(source_shift(i).dz_nonzero()) {
			assert( source_shift(i).get_dzpuis() == 4 ) ; 
		    }
		    else{
			(source_shift.set(i)).set_dzpuis(4) ; 
		    }
		}

	    }
	    //##
	    // source_shift.dec2_dzpuis() ;    // dzpuis 4 -> 2

	    double lambda_shift = double(1) / double(3) ; 

	    if ( mg->get_np(0) == 1 ) {
		lambda_shift = 0 ; 
	    }
	
	    source_shift.poisson_vect(lambda_shift, par_poisson_vect, 
				      shift, w_shift, khi_shift) ;      
	    
	    cout << "Test of the Poisson equation for shift_x :" << endl ; 
	    err = source_shift(0).test_poisson(shift(0), cout, true) ;
	    diff_shift_x = err(0, 0) ; 
	
	    cout << "Test of the Poisson equation for shift_y :" << endl ; 
	    err = source_shift(1).test_poisson(shift(1), cout, true) ;
	    diff_shift_y = err(0, 0) ; 
	    
	    // Computation of tnphi and nphi from the Cartesian components
	    //  of the shift
	    // -----------------------------------------------------------
	    
	    fait_nphi() ; 
	
	}

	//-----------------------------------------
	// Determination of the fluid velociy U
	//-----------------------------------------
	
	if (mer > mer_fix_omega + delta_mer_kep) {
		
    	    omega_c *= fact_omega ;  // Increase of the angular velocity if 
	}			   //  fact_omega != 1
	
	
	bool omega_trop_grand = false ; 
	bool kepler = true ; 

	while ( kepler ) {
	
	    // Possible decrease of Omega to ensure a velocity < c 
	
	    bool superlum = true ; 
	
	    while ( superlum ) {
	
		// Computation of Omega(r,theta)

		if (omega_c == 0.) {
		    omega_field = 0 ; 
		}
		else {
		    par_frot.set(0) = omega_c ; 
		    if (par_frot(2) != double(0)) {  // fixed a = R_eq / R_0
			par_frot.set(1) = ray_eq() / par_frot(2) ; 
		    }
		    double omeg_min = 0 ; 
		    double omeg_max = omega_c ; 
		    double precis1 = 1.e-14 ;
		    int nitermax1 = 100 ; 

		    fait_omega_field(omeg_min, omeg_max, precis1, nitermax1) ;
		}

		// New fluid velocity U :
	
		Cmp tmp = omega_field() - nphi() ; 
		tmp.annule(nzm1) ; 
		tmp.std_base_scal() ;
    
		tmp.mult_rsint() ;	    //  Multiplication by r sin(theta)

		uuu = bbb() / nnn() * tmp ; 
    
		if (uuu.get_etat() == ETATQCQ) {
		    // Same basis as (Omega -N^phi) r sin(theta) :
		    ((uuu.set()).va).set_base( (tmp.va).base ) ;   
		}


		// Is the new velocity larger than c in the equatorial plane ?
	
		superlum = false ; 
	
		for (int l=0; l<nzet; l++) {
		    for (int i=0; i<mg->get_nr(l); i++) {
		
			double u1 = uuu()(l, 0, j_b, i) ; 
			if (u1 >= 1.) {	    // superluminal velocity
			    superlum = true ; 
			    cout << "U > c  for l, i : " << l << "  " << i 
				 << "   U = " << u1 << endl ;  
			}
		    }
		}
		if ( superlum ) {
		    cout << "**** VELOCITY OF LIGHT REACHED ****" << endl ; 
		    omega_c /= fact_omega ;    // Decrease of Omega_c
		    cout << "New central rotation frequency : " 
			 << omega/(2.*M_PI) * f_unit <<  " Hz" << endl ; 
		    omega_trop_grand = true ;  
		}
	    }	// end of while ( superlum )

	
	    // New computation of U (which this time is not superluminal)
	    //  as well as of gam_euler, ener_euler, etc...
	    // -----------------------------------

	    hydro_euler() ; 
	

	    //------------------------------------------------------
	    //	First integral of motion 
	    //------------------------------------------------------
	
	    // Centrifugal potential : 
	    if (relativistic) {
		mlngamma = - log( gam_euler ) ;
	    }
	    else {
		mlngamma = - 0.5 * uuu*uuu ; 
	    }
	
	    // Equatorial values of various potentials :
	    double nuf_b  = nuf()(l_b, k_b, j_b, i_b) ; 
	    double nuq_b  = nuq()(l_b, k_b, j_b, i_b) ; 
	    double mlngamma_b  = mlngamma()(l_b, k_b, j_b, i_b) ; 
	    double primf_b = prim_field()(l_b, k_b, j_b, i_b) ;
	    
	    
	    // Central values of various potentials :
	    double nuf_c = nuf()(0,0,0,0) ; 
	    double nuq_c = nuq()(0,0,0,0) ; 
	    double mlngamma_c = 0 ;
	    double primf_c = prim_field()(0,0,0,0) ; 
	
	    // Scale factor to ensure that the enthalpy is equal to ent_b at 
	    //  the equator
	    double alpha_r2 = ( ent_c - ent_b + mlngamma_c - mlngamma_b
				+ nuq_c - nuq_b + primf_c - primf_b) 
				/ ( nuf_b - nuf_c  ) ;
	    alpha_r = sqrt(alpha_r2) ;
	    cout << "alpha_r = " << alpha_r << endl ; 

	    // Readjustment of nu :
	    // -------------------

	    logn = alpha_r2 * nuf + nuq ;
	    double nu_c =  logn()(0,0,0,0) ;

	    // First integral	--> enthalpy in all space
	    //-----------------

	    ent = (ent_c + nu_c + mlngamma_c) - logn - mlngamma - prim_field ;

	    // Test: is the enthalpy negative somewhere in the equatorial plane
	    //  inside the star ? If yes, this means that the Keplerian velocity
	    //  has been overstep.

	    kepler = false ; 
	    for (int l=0; l<nzet; l++) {
		int imax = mg->get_nr(l) - 1 ;
		if (l == l_b) imax-- ;	// The surface point is skipped
		for (int i=0; i<imax; i++) { 
		    if ( ent()(l, 0, j_b, i) < 0. ) {
			kepler = true ;
			cout << "ent < 0 for l, i : " << l << "  " << i 
			     << "   ent = " << ent()(l, 0, j_b, i) << endl ;  
		    } 
		}
	    }
	
	    if ( kepler ) {
		cout << "**** KEPLERIAN VELOCITY REACHED ****" << endl ; 
		omega_c /= fact_omega ;    // Omega is decreased
		cout << "New central rotation frequency : " 
			 << omega_c/(2.*M_PI) * f_unit << " Hz" << endl ; 
		omega_trop_grand = true ;  
	    }

	}   // End of while ( kepler )
	
	if ( omega_trop_grand ) {	// fact_omega is decreased for the
					//  next step 
	    fact_omega = sqrt( fact_omega ) ; 
	    cout << "**** New fact_omega : " << fact_omega << endl ; 
	}


	//----------------------------------------------------
	// Adaptation of the mapping to the new enthalpy field
	//----------------------------------------------------
    
	// Shall the adaptation be performed (cusp) ?
	// ------------------------------------------
	
	double dent_eq = ent().dsdr()(l_b, k_b, j_b, i_b) ; 
	double dent_pole = ent().dsdr()(l_b, k_b, 0, i_b) ;
	double rap_dent = fabs( dent_eq / dent_pole ) ; 
	cout << "| dH/dr_eq / dH/dr_pole | = " << rap_dent << endl ; 
	
	if ( rap_dent < thres_adapt ) {
	    adapt_flag = 0 ;	// No adaptation of the mapping 
	    cout << "******* FROZEN MAPPING  *********" << endl ; 
	}
	else{
	    adapt_flag = 1 ;	// The adaptation of the mapping is to be
				//  performed
	}

	mp_prev = mp_et ; 

	mp.adapt(ent(), par_adapt) ; 

 	//----------------------------------------------------
	// Computation of the enthalpy at the new grid points
	//----------------------------------------------------
	
	mp_prev.homothetie(alpha_r) ; 
	
	mp.reevaluate(&mp_prev, nzet+1, ent.set()) ; 


	//----------------------------------------------------
	// Equation of state  
	//----------------------------------------------------
	
	equation_of_state() ; 	// computes new values for nbar (n), ener (e) 
				// and press (p) from the new ent (H)
	
	//---------------------------------------------------------
	// Matter source terms in the gravitational field equations	
	//---------------------------------------------------------

	//## Computation of tnphi and nphi from the Cartesian components
	//  of the shift for the test in hydro_euler():
	    
        fait_nphi() ; 

	hydro_euler() ;		// computes new values for ener_euler (E), 
				// s_euler (S) and u_euler (U^i)

	if (relativistic) {

	    //-------------------------------------------------------
	    //	2-D Poisson equation for tggg
	    //-------------------------------------------------------

	    mp.poisson2d(source_tggg(), mp.cmp_zero(), par_poisson_tggg,
			 tggg.set()) ; 
	    
	    //-------------------------------------------------------
	    //	2-D Poisson equation for dzeta
	    //-------------------------------------------------------

	    mp.poisson2d(source_dzf(), source_dzq(), par_poisson_dzeta,
			 dzeta.set()) ; 
	    
	    err_grv2 = lbda_grv2 - 1; 
	    cout << "GRV2: " << err_grv2 << endl ; 
	    
	}
	else {
		err_grv2 = grv2() ; 
	}


	//---------------------------------------
	// Computation of the metric coefficients (except for N^phi)
	//---------------------------------------

	// Relaxations on nu and dzeta :  

	if (mer >= 10) {
		logn = relax * logn + relax_prev * logn_prev ;

		dzeta = relax * dzeta + relax_prev * dzeta_prev ; 
	}
	
	// Update of the metric coefficients N, A, B and computation of K_ij :

	update_metric() ; 
	
	//-----------------------
	//  Informations display
	//-----------------------

	partial_display(cout) ; 
	fichfreq << "  " << omega_c / (2*M_PI) * f_unit ; 
	fichevol << "  " << rap_dent ; 
	fichevol << "  " << ray_pole() / ray_eq() ; 
	fichevol << "  " << ent_c ; 

	//-----------------------------------------
	// Convergence towards a given baryon mass 
	//-----------------------------------------

	if (mer > mer_mass) {
	    
	    double xx ; 
	    if (mbar_wanted > 0.) {
		xx = mass_b() / mbar_wanted - 1. ;
		cout << "Discrep. baryon mass <-> wanted bar. mass : " << xx 
		     << endl ; 
	    }
	    else{
		xx = mass_g() / fabs(mbar_wanted) - 1. ;
		cout << "Discrep. grav. mass <-> wanted grav. mass : " << xx 
		     << endl ; 
	    }
	    double xprog = ( mer > 2*mer_mass) ? 1. : 
				 double(mer-mer_mass)/double(mer_mass) ; 
	    xx *= xprog ; 
	    double ax = .5 * ( 2. + xx ) / (1. + xx ) ; 
	    double fact = pow(ax, aexp_mass) ; 
	    cout << "  xprog, xx, ax, fact : " << xprog << "  " <<
			xx << "  " << ax << "  " << fact << endl ; 

	    if ( change_ent ) {
		ent_c *= fact ; 
	    }
	    else {
		if (mer%4 == 0) omega_c *= fact ; 
	    }
	}
	

	//------------------------------------------------------------
	//  Relative change in enthalpy with respect to previous step 
	//------------------------------------------------------------

	Tbl diff_ent_tbl = diffrel( ent(), ent_prev() ) ; 
	diff_ent = diff_ent_tbl(0) ; 
	for (int l=1; l<nzet; l++) {
	    diff_ent += diff_ent_tbl(l) ; 
	}
	diff_ent /= nzet ; 
	
	fichconv << "  " << log10( fabs(diff_ent) + 1.e-16 ) ;
	fichconv << "  " << log10( fabs(err_grv2) + 1.e-16 ) ;
	fichconv << "  " << log10( fabs(max_triax) + 1.e-16 ) ;

	vit_triax = 0 ;
	if ( (mer > mer_triax+1) && (max_triax_prev > 1e-13) ) {
		vit_triax = (max_triax - max_triax_prev) / max_triax_prev ; 
	}

	fichconv << "  " << vit_triax ;
	
	//------------------------------
	//  Recycling for the next step
	//------------------------------
	
	ent_prev = ent ; 
	logn_prev = logn ; 
	dzeta_prev = dzeta ; 
	max_triax_prev = max_triax ; 
	
	fichconv << endl ;
	fichfreq << endl ;
	fichevol << endl ;
	fichconv.flush() ; 
	fichfreq.flush() ; 
	fichevol.flush() ; 

    } // End of main loop
    
    //=========================================================================
    // 			End of iteration
    //=========================================================================

    fichconv.close() ; 
    fichfreq.close() ; 
    fichevol.close() ; 
    

}
}