1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* Method of class Etoile_rot to compute eccentric orbits
*
* (see file etoile.h for documentation).
*
*/
/*
* Copyright (c) 2001 Dorota Gondek-Rosinska
* Copyright (c) 2001 Eric Gourgoulhon
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char et_rot_f_eccentric_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_f_eccentric.C,v 1.7 2014/10/13 08:52:57 j_novak Exp $" ;
/*
* $Id: et_rot_f_eccentric.C,v 1.7 2014/10/13 08:52:57 j_novak Exp $
* $Log: et_rot_f_eccentric.C,v $
* Revision 1.7 2014/10/13 08:52:57 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.6 2014/10/06 15:13:09 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.5 2003/12/19 16:31:52 j_novak
* Still warnings...
*
* Revision 1.4 2003/12/19 16:21:42 j_novak
* Shadow hunt
*
* Revision 1.3 2003/12/05 14:50:26 j_novak
* To suppress some warnings...
*
* Revision 1.2 2003/10/03 15:58:47 j_novak
* Cleaning of some headers
*
* Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
* LORENE
*
* Revision 2.0 2001/02/08 15:13:24 eric
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_f_eccentric.C,v 1.7 2014/10/13 08:52:57 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "etoile.h"
#include "param.h"
//=============================================================================
namespace Lorene {
// r_isco()
//=============================================================================
double Etoile_rot::f_eccentric(double, double, ostream* ost) const {
cout << "Etoile_rot::f_eccentric not ready yet !" << endl ;
abort() ;
// First and second derivatives of metric functions
// ------------------------------------------------
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
Cmp dnphi = nphi().dsdr() ;
dnphi.annule(nzm1) ;
Cmp ddnphi = dnphi.dsdr() ; // d^2/dr^2 N^phi
Cmp tmp = nnn().dsdr() ;
tmp.annule(nzm1) ;
Cmp ddnnn = tmp.dsdr() ; // d^2/dr^2 N
tmp = bbb().dsdr() ;
tmp.annule(nzm1) ;
Cmp ddbbb = tmp.dsdr() ; // d^2/dr^2 B
// Constructing the velocity of a particle corotating with the star
// ----------------------------------------------------------------
Cmp bdlog = bbb().dsdr() / bbb() ;
Cmp ndlog = nnn().dsdr() / nnn() ;
Cmp bsn = bbb() / nnn() ;
Cmp r(mp) ;
r = mp.r ;
Cmp r2= r*r ;
bdlog.annule(nzm1) ;
ndlog.annule(nzm1) ;
bsn.annule(nzm1) ;
r2.annule(nzm1) ;
// ucor_plus - the velocity of corotating particle on the circular orbit
Cmp ucor_plus = (r2 * bsn * dnphi +
sqrt ( r2 * r2 * bsn *bsn * dnphi * dnphi +
4 * r2 * bdlog * ndlog + 4 * r * ndlog) ) /
2 / (1 + r * bdlog ) ;
Cmp factor_u2 = r2 * (2 * ddbbb / bbb() - 2 * bdlog * bdlog +
4 * bdlog * ndlog ) +
2 * r2 * r2 * bsn * bsn * dnphi * dnphi +
4 * r * ( ndlog - bdlog ) - 6 ;
Cmp factor_u1 = 2 * r * r2 * bsn * ( 2 * ( ndlog - bdlog ) *
dnphi - ddnphi ) ;
Cmp factor_u0 = - r2 * ( 2 * ddnnn / nnn() - 2 * ndlog * ndlog +
4 * bdlog * ndlog ) ;
// Scalar field the zero of which will give the marginally stable orbit
Cmp orbit = factor_u2 * ucor_plus * ucor_plus +
factor_u1 * ucor_plus + factor_u0 ;
// Search for the zero
// -------------------
int l_ms = nzet ; // index of the domain containing the MS orbit
Param par_ms ;
par_ms.add_int(l_ms) ;
par_ms.add_cmp(orbit) ;
// Preliminary location of the zero
// of the orbit function with an error = 0.01
// The orbit closest to the star
double theta_ms = M_PI / 2. ; // pi/2
double phi_ms = 0. ;
double xi_min = -1. ;
double xi_max = 1. ;
double resloc_old ;
double xi_f = xi_min;
orbit.std_base_scal() ;
const Valeur& vorbit = orbit.va ;
double resloc = vorbit.val_point(l_ms, xi_min, theta_ms, phi_ms) ;
for (int iloc=0; iloc<200; iloc++) {
xi_f = xi_f + 0.01 ;
resloc_old = resloc ;
resloc = vorbit.val_point(l_ms, xi_f, theta_ms, phi_ms) ;
if ((resloc * resloc_old) < double(0) ) {
xi_min = xi_f - 0.01 ;
xi_max = xi_f ;
break ;
}
}
if (ost != 0x0) {
*ost <<
"Etoile_rot::isco : preliminary location of zero of MS function :"
<< endl ;
*ost << " xi_min = " << xi_min << " f(xi_min) = " <<
vorbit.val_point(l_ms, xi_min, theta_ms, phi_ms) << endl ;
*ost << " xi_max = " << xi_max << " f(xi_max) = " <<
vorbit.val_point(l_ms, xi_max, theta_ms, phi_ms) << endl ;
}
double xi_ms = 0 ;
double r_ms = 0 ;
if ( vorbit.val_point(l_ms, xi_min, theta_ms, phi_ms) *
vorbit.val_point(l_ms, xi_max, theta_ms, phi_ms) < double(0) ) {
//## double precis_ms = 1.e-12 ; // precision in the determination of xi_ms
//## int nitermax_ms = 100 ; // max number of iterations
int niter = 0 ;
if (ost != 0x0) {
* ost <<
" number of iterations used in zerosec to locate the ISCO : "
<< niter << endl ;
*ost << " zero found at xi = " << xi_ms << endl ;
}
r_ms = mp.val_r(l_ms, xi_ms, theta_ms, phi_ms) ;
}
else {
xi_ms = -1 ;
r_ms = ray_eq() ;
}
p_r_isco = new double (
(bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms) * r_ms
) ;
// Determination of the frequency at the marginally stable orbit
// -------------------------------------------------------------
ucor_plus.std_base_scal() ;
double ucor_msplus = (ucor_plus.va).val_point(l_ms, xi_ms, theta_ms,
phi_ms) ;
double nobrs = (bsn.va).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
double nphirs = (nphi().va).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
p_f_isco = new double ( ( ucor_msplus / nobrs / r_ms + nphirs ) /
(double(2) * M_PI) ) ;
return 0 ;
}
}
|