File: et_rot_isco.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (352 lines) | stat: -rw-r--r-- 10,281 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
 * Method of class Etoile_rot to compute the location of the ISCO
 *
 * (see file etoile.h for documentation).
 *
 */

/*
 *   Copyright (c) 2000-2001 Eric Gourgoulhon
 *   Copyright (c) 2000-2001 J. Leszek Zdunik
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char et_rot_isco_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_isco.C,v 1.6 2014/10/13 08:52:58 j_novak Exp $" ;

/*
 * $Id: et_rot_isco.C,v 1.6 2014/10/13 08:52:58 j_novak Exp $
 * $Log: et_rot_isco.C,v $
 * Revision 1.6  2014/10/13 08:52:58  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.5  2014/10/06 15:13:09  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.4  2014/07/04 12:09:06  j_novak
 * New argument in zerosec(): a boolean (false by default) for aborting if the number of iteration is greater than the max.
 *
 * Revision 1.3  2011/01/07 18:20:08  m_bejger
 * Correcting for the case of stiff EOS, in which ISCO may be farther than the first domain outside the star - now searching all non-compactified domains
 *
 * Revision 1.2  2001/12/06 15:11:43  jl_zdunik
 * Introduction of the new function f_eq() in the class Etoile_rot
 *
 * Revision 1.1.1.1  2001/11/20 15:19:28  e_gourgoulhon
 * LORENE
 *
 * Revision 2.2  2001/03/26  09:31:13  jlz
 * New functions: espec_isco() and lspec_isco().
 *
 * Revision 2.1  2000/11/18  23:18:08  eric
 * Ajout de l'argument ost a Etoile_rot::r_isco. Ajout de l'argument ost a Etoile_rot::r_isco.
 *
 * Revision 2.0  2000/11/18  21:10:41  eric
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_isco.C,v 1.6 2014/10/13 08:52:58 j_novak Exp $
 *
 */

// Headers C
#include <cmath>

// Headers Lorene
#include "etoile.h"
#include "param.h"
#include "utilitaires.h"

namespace Lorene {
double fonct_etoile_rot_isco(double, const Param&) ;


//=============================================================================
//		r_isco()
//=============================================================================

double Etoile_rot::r_isco(ostream* ost) const {

    if (p_r_isco == 0x0) {    // a new computation is required

    // First and second derivatives of metric functions
    // ------------------------------------------------

    int nzm1 = mp.get_mg()->get_nzone() - 1 ;
    Cmp dnphi = nphi().dsdr() ;
    dnphi.annule(nzm1) ;
    Cmp ddnphi = dnphi.dsdr() ;    	// d^2/dr^2 N^phi

    Cmp tmp = nnn().dsdr() ;
    tmp.annule(nzm1) ;
    Cmp ddnnn = tmp.dsdr() ; 		// d^2/dr^2 N

    tmp = bbb().dsdr() ;
    tmp.annule(nzm1) ;
    Cmp ddbbb = tmp.dsdr() ; 		// d^2/dr^2 B

    // Constructing the velocity of a particle corotating with the star
    // ----------------------------------------------------------------

    Cmp bdlog = bbb().dsdr() / bbb() ;
    Cmp ndlog = nnn().dsdr() / nnn() ;
    Cmp bsn = bbb() / nnn() ;

    Cmp r(mp) ;
    r = mp.r ;

    Cmp r2= r*r ;

    bdlog.annule(nzm1) ;
    ndlog.annule(nzm1) ;
    bsn.annule(nzm1) ;
    r2.annule(nzm1) ;

    // ucor_plus - the velocity of corotating particle on the circular orbit
    Cmp ucor_plus = (r2 * bsn * dnphi +
        sqrt ( r2 * r2 * bsn *bsn * dnphi * dnphi +
		4 * r2 * bdlog * ndlog + 4 * r * ndlog) ) /
		2 / (1 + r * bdlog ) ;

    Cmp factor_u2 = r2 * (2 * ddbbb / bbb() - 2 * bdlog * bdlog +
    					  4 * bdlog * ndlog ) +
       2 * r2 * r2 * bsn * bsn * dnphi * dnphi +
       4 * r * ( ndlog - bdlog ) - 6 ;

    Cmp factor_u1 = 2 * r * r2 * bsn * ( 2 * ( ndlog - bdlog ) *
       				dnphi - ddnphi ) ;

    Cmp factor_u0 = - r2 * ( 2 * ddnnn / nnn() - 2 * ndlog * ndlog +
					 4 * bdlog * ndlog ) ;

    // Scalar field the zero of which will give the marginally stable orbit
    Cmp orbit = factor_u2 * ucor_plus * ucor_plus +
				factor_u1 * ucor_plus + factor_u0 ;
    orbit.std_base_scal() ;
    
    // Search for the zero
    // -------------------

    double r_ms, theta_ms, phi_ms, xi_ms, 
    	   xi_min = -1, xi_max = 1;  
    int l_ms = nzet, l ;
    bool find_status = false ; 

    const Valeur& vorbit = orbit.va ;
    
	for(l = nzet; l <= nzm1; l++) { 

    // Preliminary location of the zero
    // of the orbit function with an error = 0.01
    theta_ms = M_PI / 2. ; // pi/2
    phi_ms = 0. ;

    xi_min = -1. ;
    xi_max = 1. ;

    double resloc_old ;
    double xi_f = xi_min;
    
    double resloc = vorbit.val_point(l, xi_min, theta_ms, phi_ms) ;
	
	for (int iloc=0; iloc<200; iloc++) {
		xi_f = xi_f + 0.01 ;
     	resloc_old = resloc ;
     	resloc = vorbit.val_point(l, xi_f, theta_ms, phi_ms) ;
     	if ( resloc * resloc_old < double(0) ) {
			xi_min = xi_f - 0.01 ;
			xi_max = xi_f ;
			l_ms = l ; 
			find_status = true ;  
			break ;
		} 
		
  	  }
  	
    } 
  	
  	Param par_ms ;
    par_ms.add_int(l_ms) ;
    par_ms.add_cmp(orbit) ;

    if(find_status) { 
      
      double precis_ms = 1.e-13 ;    // precision in the determination of xi_ms
      int nitermax_ms = 200 ;	       // max number of iterations
      
      int niter ;
      xi_ms = zerosec(fonct_etoile_rot_isco, par_ms, xi_min, xi_max,
		      precis_ms, nitermax_ms, niter, false) ;
      
      if (niter > nitermax_ms) {
	cerr << "Etoile_rot::r_isco : " << endl ;
	cerr << "result may be wrong ... " << endl ;
	cerr << "Continuing." << endl ;
      }

      if (ost != 0x0) {
	* ost <<
	  "    number of iterations used in zerosec to locate the ISCO : "
	      << niter << endl ;
	*ost << "    zero found at xi = " << xi_ms << endl ;
      }
      
      r_ms = mp.val_r(l_ms, xi_ms, theta_ms, phi_ms) ;
      
    } else { 
      
      // assuming the ISCO is under the surface of a star 
      r_ms = ray_eq() ; 
      xi_ms = -1 ; 
      l_ms = nzet ; 
      
    } 
    
    p_r_isco = new double ((bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms)
			   * r_ms ) ;
    
	// Determination of the frequency at the marginally stable orbit
  	// -------------------------------------------------------------				

    ucor_plus.std_base_scal() ;
	double ucor_msplus = (ucor_plus.va).val_point(l_ms, xi_ms, theta_ms,
												  phi_ms) ;
	double nobrs = (bsn.va).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
	double nphirs = (nphi().va).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
	
 	p_f_isco = new double ( ( ucor_msplus / nobrs / r_ms + nphirs ) /
                       			(double(2) * M_PI) ) ;

	// Specific angular momentum on ms orbit
	// -------------------------------------				
	p_lspec_isco=new double (ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
	((bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms );

	// Specific energy on ms orbit
	// ---------------------------			
	p_espec_isco=new double (( 1./nobrs / r_ms / ucor_msplus  + nphirs) *
	(ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
	((bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms ));

    // Determination of the Keplerian frequency at the equator
	// -------------------------------------------------------------

	double ucor_eqplus = (ucor_plus.va).val_point(l_ms, -1, theta_ms, phi_ms) ;
	double nobeq = (bsn.va).val_point(l_ms, -1, theta_ms, phi_ms) ;
	double nphieq = (nphi().va).val_point(l_ms, -1, theta_ms, phi_ms) ;

	p_f_eq = new double ( ( ucor_eqplus / nobeq / ray_eq() + nphieq ) /
			      (double(2) * M_PI) ) ;

    }  // End of computation

    return *p_r_isco ;

}

//=============================================================================
//		f_isco()
//=============================================================================

double Etoile_rot::f_isco() const {

    if (p_f_isco == 0x0) {    // a new computation is required

    	r_isco() ; 		// f_isco is computed in the method r_isco()

    	assert(p_f_isco != 0x0) ;
    }

    return *p_f_isco ;

}

//=============================================================================
//		lspec_isco()
//=============================================================================

double Etoile_rot::lspec_isco() const {

    if (p_lspec_isco == 0x0) {    // a new computation is required

    	r_isco() ; 	// lspec_isco is computed in the method r_isco()

    	assert(p_lspec_isco != 0x0) ;
    }

    return *p_lspec_isco ;

}

//=============================================================================
//		espec_isco()
//=============================================================================

double Etoile_rot::espec_isco() const {

    if (p_espec_isco == 0x0) {    // a new computation is required

    	r_isco() ; 	// espec_isco is computed in the method r_isco()

    	assert(p_espec_isco != 0x0) ;
    }

    return *p_espec_isco ;

}


//=============================================================================
//              f_eq()
//=============================================================================

double Etoile_rot::f_eq() const {
  
  if (p_f_eq == 0x0) {    // a new computation is required

    r_isco() ;              // f_eq is computed in the method r_isco()

    assert(p_f_eq != 0x0) ;
  }

  return *p_f_eq ;

}


//=============================================================================
//	Function used to locate the MS orbit
//=============================================================================


double fonct_etoile_rot_isco(double xi, const Param& par){

    // Retrieval of the information:
    int l_ms = par.get_int() ;
    const Cmp& orbit = par.get_cmp() ;
    const Valeur& vorbit = orbit.va ;

    // Value et the desired point
    double theta = M_PI / 2. ;
    double phi = 0 ;
    return vorbit.val_point(l_ms, xi, theta, phi) ;

}

}