1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/*
* Method of class Etoile_rot to compute the location of the ISCO
*
* (see file etoile.h for documentation).
*
*/
/*
* Copyright (c) 2000-2001 Eric Gourgoulhon
* Copyright (c) 2000-2001 J. Leszek Zdunik
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char et_rot_isco_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_isco.C,v 1.6 2014/10/13 08:52:58 j_novak Exp $" ;
/*
* $Id: et_rot_isco.C,v 1.6 2014/10/13 08:52:58 j_novak Exp $
* $Log: et_rot_isco.C,v $
* Revision 1.6 2014/10/13 08:52:58 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.5 2014/10/06 15:13:09 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.4 2014/07/04 12:09:06 j_novak
* New argument in zerosec(): a boolean (false by default) for aborting if the number of iteration is greater than the max.
*
* Revision 1.3 2011/01/07 18:20:08 m_bejger
* Correcting for the case of stiff EOS, in which ISCO may be farther than the first domain outside the star - now searching all non-compactified domains
*
* Revision 1.2 2001/12/06 15:11:43 jl_zdunik
* Introduction of the new function f_eq() in the class Etoile_rot
*
* Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
* LORENE
*
* Revision 2.2 2001/03/26 09:31:13 jlz
* New functions: espec_isco() and lspec_isco().
*
* Revision 2.1 2000/11/18 23:18:08 eric
* Ajout de l'argument ost a Etoile_rot::r_isco. Ajout de l'argument ost a Etoile_rot::r_isco.
*
* Revision 2.0 2000/11/18 21:10:41 eric
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_isco.C,v 1.6 2014/10/13 08:52:58 j_novak Exp $
*
*/
// Headers C
#include <cmath>
// Headers Lorene
#include "etoile.h"
#include "param.h"
#include "utilitaires.h"
namespace Lorene {
double fonct_etoile_rot_isco(double, const Param&) ;
//=============================================================================
// r_isco()
//=============================================================================
double Etoile_rot::r_isco(ostream* ost) const {
if (p_r_isco == 0x0) { // a new computation is required
// First and second derivatives of metric functions
// ------------------------------------------------
int nzm1 = mp.get_mg()->get_nzone() - 1 ;
Cmp dnphi = nphi().dsdr() ;
dnphi.annule(nzm1) ;
Cmp ddnphi = dnphi.dsdr() ; // d^2/dr^2 N^phi
Cmp tmp = nnn().dsdr() ;
tmp.annule(nzm1) ;
Cmp ddnnn = tmp.dsdr() ; // d^2/dr^2 N
tmp = bbb().dsdr() ;
tmp.annule(nzm1) ;
Cmp ddbbb = tmp.dsdr() ; // d^2/dr^2 B
// Constructing the velocity of a particle corotating with the star
// ----------------------------------------------------------------
Cmp bdlog = bbb().dsdr() / bbb() ;
Cmp ndlog = nnn().dsdr() / nnn() ;
Cmp bsn = bbb() / nnn() ;
Cmp r(mp) ;
r = mp.r ;
Cmp r2= r*r ;
bdlog.annule(nzm1) ;
ndlog.annule(nzm1) ;
bsn.annule(nzm1) ;
r2.annule(nzm1) ;
// ucor_plus - the velocity of corotating particle on the circular orbit
Cmp ucor_plus = (r2 * bsn * dnphi +
sqrt ( r2 * r2 * bsn *bsn * dnphi * dnphi +
4 * r2 * bdlog * ndlog + 4 * r * ndlog) ) /
2 / (1 + r * bdlog ) ;
Cmp factor_u2 = r2 * (2 * ddbbb / bbb() - 2 * bdlog * bdlog +
4 * bdlog * ndlog ) +
2 * r2 * r2 * bsn * bsn * dnphi * dnphi +
4 * r * ( ndlog - bdlog ) - 6 ;
Cmp factor_u1 = 2 * r * r2 * bsn * ( 2 * ( ndlog - bdlog ) *
dnphi - ddnphi ) ;
Cmp factor_u0 = - r2 * ( 2 * ddnnn / nnn() - 2 * ndlog * ndlog +
4 * bdlog * ndlog ) ;
// Scalar field the zero of which will give the marginally stable orbit
Cmp orbit = factor_u2 * ucor_plus * ucor_plus +
factor_u1 * ucor_plus + factor_u0 ;
orbit.std_base_scal() ;
// Search for the zero
// -------------------
double r_ms, theta_ms, phi_ms, xi_ms,
xi_min = -1, xi_max = 1;
int l_ms = nzet, l ;
bool find_status = false ;
const Valeur& vorbit = orbit.va ;
for(l = nzet; l <= nzm1; l++) {
// Preliminary location of the zero
// of the orbit function with an error = 0.01
theta_ms = M_PI / 2. ; // pi/2
phi_ms = 0. ;
xi_min = -1. ;
xi_max = 1. ;
double resloc_old ;
double xi_f = xi_min;
double resloc = vorbit.val_point(l, xi_min, theta_ms, phi_ms) ;
for (int iloc=0; iloc<200; iloc++) {
xi_f = xi_f + 0.01 ;
resloc_old = resloc ;
resloc = vorbit.val_point(l, xi_f, theta_ms, phi_ms) ;
if ( resloc * resloc_old < double(0) ) {
xi_min = xi_f - 0.01 ;
xi_max = xi_f ;
l_ms = l ;
find_status = true ;
break ;
}
}
}
Param par_ms ;
par_ms.add_int(l_ms) ;
par_ms.add_cmp(orbit) ;
if(find_status) {
double precis_ms = 1.e-13 ; // precision in the determination of xi_ms
int nitermax_ms = 200 ; // max number of iterations
int niter ;
xi_ms = zerosec(fonct_etoile_rot_isco, par_ms, xi_min, xi_max,
precis_ms, nitermax_ms, niter, false) ;
if (niter > nitermax_ms) {
cerr << "Etoile_rot::r_isco : " << endl ;
cerr << "result may be wrong ... " << endl ;
cerr << "Continuing." << endl ;
}
if (ost != 0x0) {
* ost <<
" number of iterations used in zerosec to locate the ISCO : "
<< niter << endl ;
*ost << " zero found at xi = " << xi_ms << endl ;
}
r_ms = mp.val_r(l_ms, xi_ms, theta_ms, phi_ms) ;
} else {
// assuming the ISCO is under the surface of a star
r_ms = ray_eq() ;
xi_ms = -1 ;
l_ms = nzet ;
}
p_r_isco = new double ((bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms)
* r_ms ) ;
// Determination of the frequency at the marginally stable orbit
// -------------------------------------------------------------
ucor_plus.std_base_scal() ;
double ucor_msplus = (ucor_plus.va).val_point(l_ms, xi_ms, theta_ms,
phi_ms) ;
double nobrs = (bsn.va).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
double nphirs = (nphi().va).val_point(l_ms, xi_ms, theta_ms, phi_ms) ;
p_f_isco = new double ( ( ucor_msplus / nobrs / r_ms + nphirs ) /
(double(2) * M_PI) ) ;
// Specific angular momentum on ms orbit
// -------------------------------------
p_lspec_isco=new double (ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
((bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms );
// Specific energy on ms orbit
// ---------------------------
p_espec_isco=new double (( 1./nobrs / r_ms / ucor_msplus + nphirs) *
(ucor_msplus/sqrt(1.-ucor_msplus*ucor_msplus)*
((bbb().va).val_point(l_ms, xi_ms, theta_ms, phi_ms)) * r_ms ));
// Determination of the Keplerian frequency at the equator
// -------------------------------------------------------------
double ucor_eqplus = (ucor_plus.va).val_point(l_ms, -1, theta_ms, phi_ms) ;
double nobeq = (bsn.va).val_point(l_ms, -1, theta_ms, phi_ms) ;
double nphieq = (nphi().va).val_point(l_ms, -1, theta_ms, phi_ms) ;
p_f_eq = new double ( ( ucor_eqplus / nobeq / ray_eq() + nphieq ) /
(double(2) * M_PI) ) ;
} // End of computation
return *p_r_isco ;
}
//=============================================================================
// f_isco()
//=============================================================================
double Etoile_rot::f_isco() const {
if (p_f_isco == 0x0) { // a new computation is required
r_isco() ; // f_isco is computed in the method r_isco()
assert(p_f_isco != 0x0) ;
}
return *p_f_isco ;
}
//=============================================================================
// lspec_isco()
//=============================================================================
double Etoile_rot::lspec_isco() const {
if (p_lspec_isco == 0x0) { // a new computation is required
r_isco() ; // lspec_isco is computed in the method r_isco()
assert(p_lspec_isco != 0x0) ;
}
return *p_lspec_isco ;
}
//=============================================================================
// espec_isco()
//=============================================================================
double Etoile_rot::espec_isco() const {
if (p_espec_isco == 0x0) { // a new computation is required
r_isco() ; // espec_isco is computed in the method r_isco()
assert(p_espec_isco != 0x0) ;
}
return *p_espec_isco ;
}
//=============================================================================
// f_eq()
//=============================================================================
double Etoile_rot::f_eq() const {
if (p_f_eq == 0x0) { // a new computation is required
r_isco() ; // f_eq is computed in the method r_isco()
assert(p_f_eq != 0x0) ;
}
return *p_f_eq ;
}
//=============================================================================
// Function used to locate the MS orbit
//=============================================================================
double fonct_etoile_rot_isco(double xi, const Param& par){
// Retrieval of the information:
int l_ms = par.get_int() ;
const Cmp& orbit = par.get_cmp() ;
const Valeur& vorbit = orbit.va ;
// Value et the desired point
double theta = M_PI / 2. ;
double phi = 0 ;
return vorbit.val_point(l_ms, xi, theta, phi) ;
}
}
|