File: et_rot_mag_equil_plus.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (285 lines) | stat: -rw-r--r-- 8,765 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
 * Function et_rot_mag::equilibrium_mag_plus
 *
 * Computes rotating equilibirum with a magnetic field with extended features
 * (see file et_rot_mag.h for documentation)
 *
 */

/*
 *   Copyright (c) 2012 Pablo Cerda, Michael Gabler
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char et_rot_mag_equil_plus_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_mag_equil_plus.C,v 1.4 2014/10/13 08:52:58 j_novak Exp $" ;

/*
 * $Id: et_rot_mag_equil_plus.C,v 1.4 2014/10/13 08:52:58 j_novak Exp $
 * $Log: et_rot_mag_equil_plus.C,v $
 * Revision 1.4  2014/10/13 08:52:58  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.3  2014/10/06 15:13:09  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.2  2013/11/25 14:03:55  j_novak
 * Commented some variables to avoid warnings
 *
 * Revision 1.1  2012/08/12 17:48:35  p_cerda
 * Magnetstar: New classes for magnetstar. Allowing for non-equatorial symmetry in Etoile et al. Adding B_phi in Et_rot_mag.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_mag_equil_plus.C,v 1.4 2014/10/13 08:52:58 j_novak Exp $
 *
 */

// Headers C
#include <cmath>

// Headers Lorene
#include "et_rot_mag.h"
#include "param.h"
#include "unites.h"
#include "graphique.h"

namespace Lorene {
void Et_rot_mag::equilibrium_mag_plus(
     const Itbl& icontrol, const Tbl& control, Tbl& diff, 
     const int initial_j, 
     const Tbl an_j, 
     Cmp (*f_j)(const Cmp&, const Tbl), 
     Cmp (*)(const Cmp& x, const Tbl),
     const Tbl bn_j, 
     Cmp (*g_j)(const Cmp&, const Tbl), 
     Cmp (*N_j)(const Cmp& x, const Tbl),
     const double relax_mag) {
			     
    // Fundamental constants and units
    // -------------------------------
  using namespace Unites_mag ;
    
    // Grid parameters
    // ---------------
    
    //  const Mg3d* mg = mp.get_mg() ; 
    //  int nz = mg->get_nzone() ;	    // total number of domains
    //  int nzm1 = nz - 1 ; 
    
    // The following is required to initialize mp_prev as a Map_et:
    //Map_et& mp_et = dynamic_cast<Map_et&>(mp) ; 
        
    
    // Parameters to control the iteration
    // -----------------------------------
    
    int mer_max = icontrol(0) ; 
    //    int mer_rot = icontrol(1) ;
    //    int mer_change_omega = icontrol(2) ; 
    //    int mer_fix_omega = icontrol(3) ; 
    //    int mer_mass = icontrol(4) ; 
    int mermax_poisson = icontrol(5) ; 
    //    int delta_mer_kep = icontrol(6) ; 
    //    int mer_mag = icontrol(7) ;
    //    int mer_change_mag = icontrol(8) ;
    //    int mer_fix_mag = icontrol(9) ;

        
    double precis = control(0) ; 
    //    double omega_ini = control(1) ; 
    //    double relax = control(2) ;
    //    double relax_prev = double(1) - relax ;  
    double relax_poisson = control(3) ; 
    //    double thres_adapt = control(4) ; 
    //    double precis_adapt = control(5) ; 
    //    double Q_ini = control(6) ;
    //    double a_j_ini = control (7) ;

    // Error indicators
    // ----------------
    
    diff.set_etat_qcq() ; 
    double& diff_A_phi = diff.set(0) ; 

    // Parameters for the function Map_et::adapt
    // -----------------------------------------
    
    int niter ; 
    int adapt_flag = 1 ;    //  1 = performs the full computation, 
			    //  0 = performs only the rescaling by 
			    //      the factor alpha_r

   

 					   
    // Parameters for the Maxwell equations
    // -------------------------------------

    double precis_poisson = 1.e-16 ;     

    Param par_poisson_At ; // For scalar At Poisson equation
    Cmp ssjm1_At(mp) ;
    ssjm1_At.set_etat_zero() ;
    par_poisson_At.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson_At.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson_At.add_double(precis_poisson, 1) ; // required precision
    par_poisson_At.add_int_mod(niter, 0) ;  //  number of iterations actually used 
    par_poisson_At.add_cmp_mod( ssjm1_At ) ; 

    Param par_poisson_Avect ;  // For vector Aphi Poisson equation

    Cmp ssjm1_khi_mag(ssjm1_khi) ;
    Tenseur ssjm1_w_mag(ssjm1_wshift) ;

    par_poisson_Avect.add_int(mermax_poisson,  0) ;  // maximum number of iterations
    par_poisson_Avect.add_double(relax_poisson,  0) ; // relaxation parameter
    par_poisson_Avect.add_double(precis_poisson, 1) ; // required precision
    par_poisson_Avect.add_cmp_mod( ssjm1_khi_mag ) ; 
    par_poisson_Avect.add_tenseur_mod( ssjm1_w_mag ) ; 
    par_poisson_Avect.add_int_mod(niter, 0) ;   

				   
    // Initializations
    // ---------------

    // Initial  magnetic quantities
    a_j = 0;
    
    update_metric() ;	// update of the metric coefficients

    equation_of_state() ;	// update of the density, pressure, etc...
    
    hydro_euler() ;	// update of the hydro quantities relative to the 
			//  Eulerian observer

    MHD_comput() ; // update of EM contributions to stress-energy tensor


    // Output files

    ofstream fichmulti("multipoles.d") ;    
    
		    
    ofstream fichconv("convergence.d") ;    // Output file for diff_A_phi
    fichconv << "#     diff_A_phi     GRV2    " << endl ; 
    
    ofstream fichfreq("frequency.d") ;    // Output file for  omega
    fichfreq << "#       f [Hz]" << endl ; 
    
    ofstream fichevol("evolution.d") ;    // Output file for various quantities
    fichevol << 
    "#       |dH/dr_eq/dH/dr_pole|      r_pole/r_eq	ent_c" 
    << endl ; 
    
    diff_A_phi = 1 ; 
    //    double err_grv2 = 1 ; 
    

    A_phi = 0. ;	
    A_phi.std_base_scal() ;
    A_t = 0.;	
    A_t.std_base_scal() ;
    j_phi = 0.;	
    j_phi.std_base_scal() ;

    Cmp A_phi_old = A_phi;
    Cmp A_phi_new = A_phi;
    Cmp A_t_old = A_t;
    Cmp A_t_new = A_t;
    Cmp j_phi_old = j_phi;
    Cmp j_phi_new = j_phi;

    //=========================================================================
    // 			Start of iteration
    //=========================================================================

    for(int mer=0 ; (diff_A_phi > precis) && (mer<mer_max) ; mer++ ) {

 	cout << "-----------------------------------------------" << endl ;
	cout << "step: " << mer << endl ;
   
	fichconv << mer ;
	fichfreq << mer ;
	fichevol << mer ;
	
	A_t_old = A_t;
	A_phi_old = A_phi;
	j_phi_old = j_phi;

	//-----------------------------------------------
	// Computation of electromagnetic potentials :
	// -------------------------------------------

	magnet_comput_plus(adapt_flag, initial_j, 
			   an_j, f_j, bn_j, g_j, N_j, par_poisson_At, par_poisson_Avect) ;
	A_t_new = A_t;
	A_phi_new = A_phi;
	j_phi_new = j_phi;
	
	A_t = relax_mag*A_t_new + (1.-relax_mag)*A_t_old ;
	A_phi = relax_mag*A_phi_new + (1. - relax_mag)*A_phi_old ;
	

	double diff_A_phi_n = max(abs((A_phi_new - A_phi_old))).set(0);
	double max_Aphi = max(abs(A_phi)).set(0);
	double diff_j_phi_n = max(abs((j_phi_new - j_phi_old))).set(0);
	double max_jphi = max(abs(j_phi)).set(0);

	Tbl maphi = A_phi_new.multipole_spectrum();
	//	int nzmax = maphi.get_dim (1) -1;

	if (max_Aphi == 0) {
	  diff_A_phi = 100.;
	}else{
	  diff_A_phi = diff_A_phi_n / max_Aphi ;
	}
	cout << mer << " "<< diff_A_phi << " " << max(A_phi).set(0) << " " << min(A_phi).set(0) << endl;
	cout << mer << " "<< diff_j_phi_n << " " << max_jphi << endl;
	

	fichmulti << diff_A_phi<< " " 
		  <<maphi.set(0,0) <<  " " <<maphi.set(0,1) <<  " " 
		  <<maphi.set(0,2) <<  " " <<maphi.set(0,3) <<  " " 
		  <<maphi.set(0,4) << endl;
	

	//	des_coupe_y(A_phi, 0., nzet, "Magnetic field") ; 
	//		des_coupe_y(j_phi, 0., nzet, "Current") ; 

	

	fichconv << endl ;
	fichfreq << endl ;
	fichevol << endl ;
	fichconv.flush() ; 
	fichfreq.flush() ; 
	fichevol.flush() ; 

    } // End of main loop
    
    //=========================================================================
    // 			End of iteration
    //=========================================================================

    fichconv.close() ; 
    fichfreq.close() ; 
    fichevol.close() ; 
    fichmulti.close();

}
}