File: et_rot_mag_mag_plus.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (542 lines) | stat: -rw-r--r-- 14,165 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
/*
 * Computes magnetic fields and derived quantities for rotating equilibrium
 *
 * (see file et_rot_mag.h for documentation)
 *
 */

/*
 *   Copyright (c) 2002 Emmanuel Marcq
 *   Copyright (c) 2002 Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char et_rot_mag_mag_plus_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_mag_mag_plus.C,v 1.3 2014/10/13 08:52:58 j_novak Exp $" ;

/*
 * $Id: et_rot_mag_mag_plus.C,v 1.3 2014/10/13 08:52:58 j_novak Exp $
 * $Log: et_rot_mag_mag_plus.C,v $
 * Revision 1.3  2014/10/13 08:52:58  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.2  2014/10/06 15:13:09  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.1  2012/08/12 17:48:35  p_cerda
 * Magnetstar: New classes for magnetstar. Allowing for non-equatorial symmetry in Etoile et al. Adding B_phi in Et_rot_mag.
 *
 * Revision 1.14  2005/06/03 15:31:56  j_novak
 * Better computation when more than one point in phi.
 *
 * Revision 1.13  2003/10/03 15:58:47  j_novak
 * Cleaning of some headers
 *
 * Revision 1.12  2002/09/09 13:00:39  e_gourgoulhon
 * Modification of declaration of Fortran 77 prototypes for
 * a better portability (in particular on IBM AIX systems):
 * All Fortran subroutine names are now written F77_* and are
 * defined in the new file C++/Include/proto_f77.h.
 *
 * Revision 1.11  2002/06/05 15:15:59  j_novak
 * The case of non-adapted mapping is treated.
 * parmag.d and parrot.d have been merged.
 *
 * Revision 1.10  2002/06/03 13:23:16  j_novak
 * The case when the mapping is not adapted is now treated
 *
 * Revision 1.9  2002/06/03 13:00:45  e_marcq
 *
 * conduc parameter read in parmag.d
 *
 * Revision 1.7  2002/05/20 10:31:59  j_novak
 * *** empty log message ***
 *
 * Revision 1.6  2002/05/17 15:08:01  e_marcq
 *
 * Rotation progressive plug-in, units corrected, Q and a_j new member data
 *
 * Revision 1.5  2002/05/16 10:02:09  j_novak
 * Errors in stress energy tensor corrected
 *
 * Revision 1.4  2002/05/15 09:54:00  j_novak
 * First operational version
 *
 * Revision 1.3  2002/05/14 13:38:36  e_marcq
 *
 *
 * Unit update, new outputs
 *
 * Revision 1.1  2002/05/10 09:26:52  j_novak
 * Added new class Et_rot_mag for magnetized rotating neutron stars (under development)
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/et_rot_mag_mag_plus.C,v 1.3 2014/10/13 08:52:58 j_novak Exp $
 *
 */

// Headers C
#include <cstdlib>
#include <cmath>

// Headers Lorene
#include "et_rot_mag.h"
#include "utilitaires.h"
#include "param.h"
#include "proto_f77.h"
#include "graphique.h"
#include "unites.h"

namespace Lorene {

// Algo du papier de 1995

  using namespace Unites ;

void Et_rot_mag::magnet_comput_plus(const int adapt_flag,
				    const int initial_j, 
				    const Tbl an_j,
				    Cmp (*f_j)(const Cmp&, const Tbl), 
				    const Tbl bn_j,
				    Cmp (*g_j)(const Cmp&, const Tbl), 
				    Cmp (*N_j)(const Cmp&, const Tbl), 
				    Param& par_poisson_At, 
				    Param& par_poisson_Avect){
  double relax_mag = 1.0 ;

  int Z = mp.get_mg()->get_nzone();

  if(is_conduct()) {
    bool adapt(adapt_flag) ;
    /****************************************************************
     *  Assertion that all zones have same number of points in theta
     ****************************************************************/
    int nt = mp.get_mg()->get_nt(nzet-1) ; 
    for (int l=0; l<Z; l++) assert(mp.get_mg()->get_nt(l) == nt) ;

    Tbl Rsurf(nt) ;
    Rsurf.set_etat_qcq() ;
    mp.r.fait() ;
    mp.tet.fait() ;
    Mtbl* theta = mp.tet.c ;
    const Map_radial* mpr = dynamic_cast<const Map_radial*>(&mp) ;
    assert (mpr != 0x0) ;
    for (int j=0; j<nt; j++) 
      Rsurf.set(j) = mpr->val_r_jk(l_surf()(0,j), xi_surf()(0,j), j, 0) ;


    // Calcul de A_0t dans l'etoile (conducteur parfait)

    Cmp A_0t(- omega * A_phi) ;
    A_0t.annule(nzet,Z-1) ;
 
    Tenseur ATTENS(A_t) ; 
    Tenseur APTENS(A_phi) ;
    Tenseur BMN(-logn) ;
    BMN =  BMN + log(bbb) ;
    BMN.set_std_base() ;


    Cmp grad1(flat_scalar_prod_desal(ATTENS.gradient_spher(),
				     nphi.gradient_spher())());
    Cmp grad2(flat_scalar_prod_desal(APTENS.gradient_spher(),
				     nphi.gradient_spher())()) ;
    Cmp grad3(flat_scalar_prod_desal(ATTENS.gradient_spher(),
				     BMN.gradient_spher())()
	      + 2*nphi()*flat_scalar_prod_desal(APTENS.gradient_spher(),
						BMN.gradient_spher())()) ;

    Cmp ATANT(A_phi.srdsdt()); // Constrction par copie pour mapping

    ATANT.va = ATANT.va.mult_ct().ssint() ;

    Cmp ttnphi(tnphi()) ;
    ttnphi.mult_rsint() ;
    Cmp BLAH(- b_car()/(nnn()*nnn())*ttnphi*grad1)  ;
    BLAH -= (1+b_car()/(nnn()*nnn())*tnphi()*tnphi())*grad2  ;
    Cmp nphisr(nphi()) ;
    nphisr.div_r() ;
    Cmp npgrada(2*nphisr*(A_phi.dsdr()+ATANT )) ;
    npgrada.inc2_dzpuis() ;
    BLAH -=  grad3 + npgrada ;
    Cmp gtt(-nnn()*nnn()+b_car()*tnphi()*tnphi()) ;
    Cmp gtphi( - b_car()*ttnphi) ;

    // Calcul de j_t grace a Maxwell-Gauss
    Cmp tmp(((BLAH - A_0t.laplacien())/a_car() - gtphi*j_phi)
	    / gtt);
    tmp.annule(nzet, Z-1) ;
    if (adapt) {
      j_t = tmp ;
    }
    else {
      j_t.allocate_all() ;
      for (int j=0; j<nt; j++) 
	for (int l=0; l<nzet; l++) 
	  for (int i=0; i<mp.get_mg()->get_nr(l); i++) 
	    j_t.set(l,0,j,i) = ( (*mp.r.c)(l,0,j,i) > Rsurf(j) ?
				 0. : tmp(l,0,j,i) ) ;
      j_t.annule(nzet,Z-1) ;
    }
    j_t.std_base_scal() ;

    // Calcul du courant j_phi

    Tbl maxA_phi = max(abs(A_phi)); 

    if (maxA_phi.set(0) == 0) {
      
      cout << "Initializing j_phi" << endl;

      double aini = 0.;
      int nd = an_j.get_dim(0);
      for (int i=0; i<nd - 4;i++){ 
	aini = aini + fabs(an_j(i));
      }
      aini = aini + fabs (an_j(3)) + fabs (an_j(5));
      double bini = 0.;
      nd = bn_j.get_dim(0);
      for (int i=0; i<nd;i++){ 
	bini = bini + fabs(bn_j(i));
      }

      switch (initial_j) {
      case 0 :
	j_phi =  (ener() + press())*aini + bini ;
	j_phi.std_base_scal() ; 
	j_phi.annule(nzet,Z-1) ;
	j_phi.std_base_scal() ; 
	break;

      case 1 :
	j_phi =  (ener() + press())*aini + bini;
	j_phi.std_base_scal() ; 
	j_phi.mult_rsint();  
	j_phi.annule(nzet,Z-1) ;
	j_phi.std_base_scal() ; 
	break;

      case 2 :     
	j_phi =  (ener() + press())*aini + bini ;
	j_phi.std_base_scal() ; 
	j_phi.mult_cost();     
	j_phi.mult_rsint();     
	j_phi.set_dzpuis(2);
	j_phi.mult_r();
	j_phi.annule(nzet,Z-1) ;
	j_phi.std_base_scal() ; 
	break;
	
      default :
	cout << "ERROR" << endl;
	cout << "initial_j = " << initial_j << endl;
	abort();
      }


    }else{



      double maxA_phi_surf = 0.;
      for (int j = 0; j < nt ; j++ ) {
	//	double maxA_phi_surf_tmp = fabs(A_phi(nzet-1,0,j,mp.get_mg()->get_nr(nzet-1)-1)); 
	double maxA_phi_surf_tmp = fabs(A_phi(nzet,0,j,0));
	maxA_phi_surf= max(maxA_phi_surf, maxA_phi_surf_tmp); 
      }

      Cmp A_phi_scaled = A_phi / maxA_phi.set(0);
      Cmp A_phi_scaled2 = (A_phi - maxA_phi_surf)/ maxA_phi.set(0);

      A_phi_scaled2.allocate_all() ;
      for (int j=0; j<nt; j++) {
	for (int l=0; l<Z; l++) { 
	  for (int i=0; i<mp.get_mg()->get_nr(l); i++) { 
	    if (A_phi_scaled2(l,0,j,i) < 0.) {
	      A_phi_scaled2.set(l,0,j,i) = 0 ;
	    }
	  }
	}
      }
      A_phi_scaled2.std_base_scal() ;

      
      Cmp j_phi_ff = g_j (A_phi_scaled2, bn_j)/maxA_phi.set(0);
      //Cmp j_phi_ff =  A_phi_scaled ;
      j_phi_ff.std_base_scal() ;
      j_phi_ff.div_rsint();
      j_phi_ff.div_rsint();
      j_phi_ff = j_phi_ff / b_car() / nnn() / nnn();

      j_phi = omega * j_t 
	+ (ener() + press())*f_j(A_phi_scaled, an_j)/maxA_phi.set(0)/g_si
	+ j_phi_ff;

      j_phi.annule(nzet,Z-1) ;
      j_phi.std_base_scal() ;



      B_phi = N_j (A_phi_scaled2, bn_j);      
      B_phi.std_base_scal() ;
      B_phi = B_phi / nnn();



      }
    //    des_coupe_y(A_phi, 0., nzet, "Magnetic field") ; 
    //    des_coupe_y(j_phi, 0., nzet, "Current",0x0,1.2,true,30) ; 

    // Resolution de Maxwell Ampere (-> A_phi)
    // Calcul des termes sources avec A-t du pas precedent.

    Cmp grad4(flat_scalar_prod_desal(APTENS.gradient_spher(),
				     BMN.gradient_spher())());

    Tenseur source_tAphi(mp, 1, CON, mp.get_bvect_spher()) ;

    source_tAphi.set_etat_qcq() ;
    Cmp tjphi(j_phi) ;
    tjphi.mult_rsint() ;
    Cmp tgrad1(grad1) ;
    tgrad1.mult_rsint() ;
    Cmp d_grad4(grad4) ;
    d_grad4.div_rsint() ;
    source_tAphi.set(0)=0 ;
    source_tAphi.set(1)=0 ;
    source_tAphi.set(2)= -b_car()*a_car()*(tjphi-tnphi()*j_t)
      + b_car()/(nnn()*nnn())*(tgrad1+tnphi()*grad2)+d_grad4 ;
   
    source_tAphi.change_triad(mp.get_bvect_cart());

    Tenseur WORK_VECT(mp, 1, CON, mp.get_bvect_cart()) ;
    WORK_VECT.set_etat_qcq() ;
    for (int i=0; i<3; i++) {
      WORK_VECT.set(i) = 0 ; 
    }
    Tenseur WORK_SCAL(mp) ;
    WORK_SCAL.set_etat_qcq() ;
    WORK_SCAL.set() = 0 ;
  
    double lambda_mag = 0. ; // No 3D version !

    Tenseur AVECT(source_tAphi) ;
    if (source_tAphi.get_etat() != ETATZERO) {
    
      for (int i=0; i<3; i++) {
	if(source_tAphi(i).dz_nonzero()) {
	  assert( source_tAphi(i).get_dzpuis() == 4 ) ; 
	}
	else{
	  (source_tAphi.set(i)).set_dzpuis(4) ; 
	}
      }
    
    }
    source_tAphi.poisson_vect(lambda_mag, par_poisson_Avect, AVECT, WORK_VECT,
			      WORK_SCAL) ;
    AVECT.change_triad(mp.get_bvect_spher());
    Cmp A_phi_n(AVECT(2));
    A_phi_n.mult_rsint() ;

    // Resolution de Maxwell-Ampere : A_1

    Cmp source_A_1t(-a_car()*(j_t*gtt + j_phi*gtphi) + BLAH);

    Cmp A_1t(mp);
    A_1t = 0 ;
    source_A_1t.poisson(par_poisson_At, A_1t) ;

    int L = mp.get_mg()->get_nt(0);

    Tbl MAT(L,L) ;
    Tbl MAT_PHI(L,L);
    Tbl VEC(L) ;

    MAT.set_etat_qcq() ;
    VEC.set_etat_qcq() ;
    MAT_PHI.set_etat_qcq() ;

    Tbl leg(L,2*L) ;
    leg.set_etat_qcq() ;

    Cmp psi(mp);
    Cmp psi2(mp);
    psi.allocate_all() ;
    psi2.allocate_all() ;

    for (int p=0; p<mp.get_mg()->get_np(0); p++) {
	// leg[k,l] : legendre_l(cos(theta_k))
	// Construction par recurrence de degre 2
	for(int k=0;k<L;k++){
	    for(int l=0;l<2*L;l++){
		
		if(l==0) leg.set(k,l)=1. ;
		if(l==1) leg.set(k,l)=cos((*theta)(l_surf()(p,k),p,k,0)) ;
		if(l>=2) leg.set(k,l) = double(2*l-1)/double(l)  
			     * cos((*theta)(l_surf()(p,k),p,k,0))
			     * leg(k,l-1)-double(l-1)/double(l)*leg(k,l-2) ;
	    }
	}
  
	for(int k=0;k<L;k++){
	    
	    // Valeurs a la surface trouvees via va.val_point_jk(l,xisurf,k,p)
	    
	    VEC.set(k) = A_0t.va.val_point_jk(l_surf()(p,k), xi_surf()(p,k), k, p)
		-A_1t.va.val_point_jk(l_surf()(p,k), xi_surf()(p,k), k, p);
  
	    for(int l=0;l<L;l++) MAT.set(l,k) = leg(k,2*l)/pow(Rsurf(k),2*l+1);
    
	}
	// appel fortran : 

	int* IPIV=new int[L] ;
	int INFO ;
	
	Tbl MAT_SAVE(MAT) ;
	Tbl VEC2(L) ;
	VEC2.set_etat_qcq() ;
	int un = 1 ;

	F77_dgesv(&L, &un, MAT.t, &L, IPIV, VEC.t, &L, &INFO) ; 

	// coeffs a_l dans VEC

	for(int k=0;k<L;k++) {VEC2.set(k)=1. ; }

	F77_dgesv(&L, &un, MAT_SAVE.t, &L, IPIV, VEC2.t, &L, &INFO) ;
	
	delete [] IPIV ;

	for(int nz=0;nz < Z; nz++){
	    for(int i=0;i< mp.get_mg()->get_nr(nz);i++){
		for(int k=0;k<L;k++){
		    psi.set(nz,p,k,i) = 0. ;
		    psi2.set(nz,p,k,i) = 0. ;
		    for(int l=0;l<L;l++){
			psi.set(nz,p,k,i) += VEC(l)*leg(k,2*l) / 
			    pow((*mp.r.c)(nz,p,k,i),2*l+1);
			psi2.set(nz,p,k,i) += VEC2(l)*leg(k,2*l)/
			    pow((*mp.r.c)(nz, p, k,i),2*l+1);
		    }
		}
	    }
	}
    }
    psi.std_base_scal() ;
    psi2.std_base_scal() ;
  
    assert(psi.get_dzpuis() == 0) ;
    int dif = A_1t.get_dzpuis() ;
    if (dif > 0) {
      for (int d=0; d<dif; d++) A_1t.dec_dzpuis() ;
    }

    if (adapt) {
      Cmp A_t_ext(A_1t + psi) ;
      A_t_ext.annule(0,nzet-1) ;
      A_0t += A_t_ext ;
    }
    else {
      tmp = A_0t ;
      A_0t.allocate_all() ;
      for (int j=0; j<nt; j++) 
	for (int l=0; l<Z; l++) 
	  for (int i=0; i<mp.get_mg()->get_nr(l); i++) 
	    A_0t.set(l,0,j,i) = ( (*mp.r.c)(l,0,j,i) > Rsurf(j) ?
				  A_1t(l,0,j,i) + psi(l,0,j,i) : tmp(l,0,j,i) ) ;
    } 
    A_0t.std_base_scal() ;

    Valeur** asymp = A_0t.asymptot(1) ;

    double Q_0 = -4*M_PI*(*asymp[1])(Z-1,0,0,0) ; // utilise A_0t plutot que E
    delete asymp[0] ;
    delete asymp[1] ;

    delete [] asymp ;

    asymp = psi2.asymptot(1) ;

    double Q_2 = -4*M_PI*(*asymp[1])(Z-1,0,0,0)  ; // A_2t = psi2 a l'infini
    delete asymp[0] ;
    delete asymp[1] ;

    delete [] asymp ;

    // solution definitive de A_t:

    double C = (Q-Q_0)/Q_2 ;

    assert(psi2.get_dzpuis() == 0) ;
    dif = A_0t.get_dzpuis() ;
    if (dif > 0) {
      for (int d=0; d<dif; d++) A_0t.dec_dzpuis() ;
    }
    Cmp A_t_n(mp) ;
    if (adapt) {
      A_t_n = A_0t + C ;
      Cmp A_t_ext(A_0t + C*psi2) ;
      A_t_ext.annule(0,nzet-1) ;
      A_t_n.annule(nzet,Z-1) ;
      A_t_n += A_t_ext ;
    }
    else {
      A_t_n.allocate_all() ;
      for (int j=0; j<nt; j++) 
	for (int l=0; l<Z; l++) 
	  for (int i=0; i<mp.get_mg()->get_nr(l); i++) 
	    A_t_n.set(l,0,j,i) = ( (*mp.r.c)(l,0,j,i) > Rsurf(j) ?
				   A_0t(l,0,j,i) + C*psi2(l,0,j,i) : 
				   A_0t(l,0,j,i) + C ) ;    
    }
    A_t_n.std_base_scal() ;

    asymp = A_t_n.asymptot(1) ;

    delete asymp[0] ;
    delete asymp[1] ;

    delete [] asymp ;
    A_t = relax_mag*A_t_n + (1.-relax_mag)*A_t ;
    A_phi = relax_mag*A_phi_n + (1. - relax_mag)*A_phi ;


  }else{
    cout << "not implemented" << endl;
    abort();
    
  }


}













}