1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* Method of class Etoile to compute a static spherical configuration
* with the outer boundary condition at a finite radius
*
* (see file etoile.h for documentation).
*
*/
/*
* Copyright (c) 2004 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char etoile_eqsph_falloff_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/etoile_eqsph_falloff.C,v 1.2 2014/10/13 08:52:58 j_novak Exp $" ;
/*
* $Id: etoile_eqsph_falloff.C,v 1.2 2014/10/13 08:52:58 j_novak Exp $
* $Log: etoile_eqsph_falloff.C,v $
* Revision 1.2 2014/10/13 08:52:58 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.1 2004/11/30 20:52:24 k_taniguchi
* *** empty log message ***
*
*
*
* $Header: /cvsroot/Lorene/C++/Source/Etoile/etoile_eqsph_falloff.C,v 1.2 2014/10/13 08:52:58 j_novak Exp $
*
*/
// Headers C
#include "math.h"
// Headers Lorene
#include "etoile.h"
#include "param.h"
#include "unites.h"
namespace Lorene {
void Etoile::equil_spher_falloff(double ent_c, double precis) {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
// Initializations
// ---------------
const Mg3d* mg = mp.get_mg() ;
int nz = mg->get_nzone() ; // total number of domains
// Index of the point at phi=0, theta=pi/2 at the surface of the star:
int l_b = nzet - 1 ;
int i_b = mg->get_nr(l_b) - 1 ;
int j_b = mg->get_nt(l_b) - 1 ;
int k_b = 0 ;
// Value of the enthalpy defining the surface of the star
double ent_b = 0 ;
// Initialization of the enthalpy field to the constant value ent_c :
ent = ent_c ;
ent.annule(nzet, nz-1) ;
// Corresponding profiles of baryon density, energy density and pressure
equation_of_state() ;
// Initial metric
a_car = 1 ; // this value will remain unchanged in the Newtonian case
beta_auto = 0 ; // this value will remain unchanged in the Newtonian case
// Auxiliary quantities
// --------------------
// Affine mapping for solving the Poisson equations
Map_af mpaff(mp);
Param par_nul ; // Param (null) for Map_af::poisson.
Tenseur ent_jm1(mp) ; // Enthalpy at previous step
ent_jm1 = 0 ;
Tenseur source(mp) ;
Tenseur logn(mp) ;
Tenseur logn_quad(mp) ;
logn = 0 ;
logn_quad = 0 ;
Cmp dlogn(mp) ;
Cmp dbeta(mp) ;
double diff_ent = 1 ;
int mermax = 200 ; // Max number of iterations
double alpha_r = 1 ;
int k_falloff = 1 ;
//=========================================================================
// Start of iteration
//=========================================================================
for(int mer=0 ; (diff_ent > precis) && (mer<mermax) ; mer++ ) {
cout << "-----------------------------------------------" << endl ;
cout << "step: " << mer << endl ;
cout << "alpha_r: " << alpha_r << endl ;
cout << "diff_ent = " << diff_ent << endl ;
//-----------------------------------------------------
// Resolution of Poisson equation for ln(N)
//-----------------------------------------------------
// Matter part of ln(N)
// --------------------
if (relativistic) {
source = a_car * (ener + 3*press) ;
}
else {
source = nbar ;
}
(source.set()).set_dzpuis(4) ;
source.set_std_base() ; // Sets the standard spectral bases.
logn_auto.set_etat_qcq() ;
mpaff.poisson_falloff(source(), par_nul, logn_auto.set(), k_falloff) ;
// NB: at this stage logn_auto is in machine units, not in c^2
// Quadratic part of ln(N)
// -----------------------
if (relativistic) {
mpaff.dsdr(logn(), dlogn) ;
mpaff.dsdr(beta_auto(), dbeta) ;
source = - dlogn * dbeta ;
logn_quad.set_etat_qcq() ;
mpaff.poisson_falloff(source(), par_nul, logn_quad.set(),
k_falloff) ;
}
//-----------------------------------------------------
// Computation of the new radial scale
//-----------------------------------------------------
// alpha_r (r = alpha_r r') is determined so that the enthalpy
// takes the requested value ent_b at the stellar surface
double nu_mat0_b = logn_auto()(l_b, k_b, j_b, i_b) ;
double nu_mat0_c = logn_auto()(0, 0, 0, 0) ;
double nu_quad0_b = logn_quad()(l_b, k_b, j_b, i_b) ;
double nu_quad0_c = logn_quad()(0, 0, 0, 0) ;
double alpha_r2 = ( ent_c - ent_b - nu_quad0_b + nu_quad0_c )
/ ( qpig*(nu_mat0_b - nu_mat0_c) ) ;
alpha_r = sqrt(alpha_r2) ;
// New radial scale
mpaff.homothetie( alpha_r ) ;
//--------------------
// First integral
//--------------------
// Gravitation potential in units c^2 :
logn_auto = alpha_r2*qpig * logn_auto ;
logn = logn_auto + logn_quad ;
// Enthalpy in all space
double logn_c = logn()(0, 0, 0, 0) ;
ent = ent_c - logn() + logn_c ;
//---------------------
// Equation of state
//---------------------
equation_of_state() ;
if (relativistic) {
//----------------------------
// Equation for beta = ln(AN)
//----------------------------
mpaff.dsdr(logn(), dlogn) ;
mpaff.dsdr(beta_auto(), dbeta) ;
source = 3 * qpig * a_car * press ;
source = source()
- 0.5 * ( dlogn * dlogn + dbeta * dbeta ) ;
source.set_std_base() ; // Sets the standard spectral bases.
beta_auto.set_etat_qcq() ;
mpaff.poisson_falloff(source(), par_nul, beta_auto.set(),
k_falloff) ;
// Metric coefficient A^2 update
a_car = exp(2*(beta_auto - logn)) ;
}
// Relative difference with enthalpy at the previous step
// ------------------------------------------------------
diff_ent = norme( diffrel(ent(), ent_jm1()) ) / nzet ;
// Next step
// ---------
ent_jm1 = ent ;
} // End of iteration loop
//=========================================================================
// End of iteration
//=========================================================================
// The mapping is transfered to that of the star:
// ----------------------------------------------
mp = mpaff ;
// Sets value to all the Tenseur's of the star
// -------------------------------------------
// ... hydro
ent.annule(nzet, nz-1) ; // enthalpy set to zero at the exterior of
// the star
ener_euler = ener ;
s_euler = 3 * press ;
gam_euler = 1 ;
u_euler = 0 ;
// ... metric
nnn = exp( unsurc2 * logn ) ;
nnn.set_std_base() ;
shift = 0 ;
a_car.set_std_base() ;
// Info printing
// -------------
cout << endl
<< "Characteristics of the star obtained by Etoile::equil_spher_falloff : "
<< endl
<< "-------------------------------------------------------------------"
<< endl ;
double ray = mp.val_r(l_b, 1., M_PI/2., 0) ;
cout << "Coordinate radius : " << ray / km << " km" << endl ;
double rcirc = ray * sqrt( a_car()(l_b, k_b, j_b, i_b) ) ;
double compact = qpig/(4.*M_PI) * mass_g() / rcirc ;
cout << "Circumferential radius R : " << rcirc/km << " km" << endl ;
cout << "Baryon mass : " << mass_b()/msol << " Mo" << endl ;
cout << "Gravitational mass M : " << mass_g()/msol << " Mo" << endl ;
cout << "Compacity parameter GM/(c^2 R) : " << compact << endl ;
//-----------------
// Virial theorem
//-----------------
//... Pressure term
source = qpig * a_car * sqrt(a_car) * s_euler ;
source.set_std_base() ;
double vir_mat = source().integrale() ;
//... Gravitational term
Cmp tmp = beta_auto() - logn() ;
source = - ( logn().dsdr() * logn().dsdr()
- 0.5 * tmp.dsdr() * tmp.dsdr() )
* sqrt(a_car()) ;
source.set_std_base() ;
double vir_grav = source().integrale() ;
//... Relative error on the virial identity GRV3
double grv3 = ( vir_mat + vir_grav ) / vir_mat ;
cout << "Virial theorem GRV3 : " << endl ;
cout << " 3P term : " << vir_mat << endl ;
cout << " grav. term : " << vir_grav << endl ;
cout << " relative error : " << grv3 << endl ;
}
}
|