File: etoile_equil_spher.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (505 lines) | stat: -rw-r--r-- 15,250 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * Method of class Etoile to compute a static spherical configuration.
 *
 * (see file etoile.h for documentation).
 *
 */

/*
 *   Copyright (c) 2000-2001 Eric Gourgoulhon
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char etoile_equil_spher_C[] = "$Header: /cvsroot/Lorene/C++/Source/Etoile/etoile_equil_spher.C,v 1.6 2014/10/13 08:52:59 j_novak Exp $" ;

/*
 * $Id: etoile_equil_spher.C,v 1.6 2014/10/13 08:52:59 j_novak Exp $
 * $Log: etoile_equil_spher.C,v $
 * Revision 1.6  2014/10/13 08:52:59  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.5  2008/11/14 13:48:06  e_gourgoulhon
 * Added parameter pent_limit to force the enthalpy values at the
 * boundaries between the domains, in case of more than one domain inside
 * the star.
 *
 * Revision 1.4  2004/05/07 12:13:15  k_taniguchi
 * Change the position of the initialization of alpha_r.
 *
 * Revision 1.3  2004/03/25 10:29:06  j_novak
 * All LORENE's units are now defined in the namespace Unites (in file unites.h).
 *
 * Revision 1.2  2003/04/23 15:09:38  j_novak
 * Standard basis is set to a_car and nnn before exiting.
 *
 * Revision 1.1.1.1  2001/11/20 15:19:28  e_gourgoulhon
 * LORENE
 *
 * Revision 2.4  2000/02/02  09:23:51  eric
 * Ajout du theoreme du viriel.
 * Affichage quantites globales a la fin.
 *
 * Revision 2.3  2000/01/28  17:18:36  eric
 * Modifs mineures.
 *
 * Revision 2.2  2000/01/27  16:47:16  eric
 * Premiere version qui tourne !
 *
 * Revision 2.1  2000/01/26  13:18:19  eric
 * *** empty log message ***
 *
 * Revision 2.0  2000/01/24  17:13:56  eric
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Etoile/etoile_equil_spher.C,v 1.6 2014/10/13 08:52:59 j_novak Exp $
 *
 */

// Headers C
#include "math.h"

// Headers Lorene
#include "etoile.h"
#include "param.h"
#include "unites.h"	    
#include "nbr_spx.h"
#include "graphique.h"

namespace Lorene {
void Etoile::equilibrium_spher(double ent_c, double precis, const Tbl* pent_limit){
    
    // Fundamental constants and units
    // -------------------------------
  using namespace Unites ;
    
    // Initializations
    // ---------------
    
    const Mg3d* mg = mp.get_mg() ; 
    int nz = mg->get_nzone() ;	    // total number of domains
    
    // Index of the point at phi=0, theta=pi/2 at the surface of the star:
    int l_b = nzet - 1 ; 
    int i_b = mg->get_nr(l_b) - 1 ; 
    int j_b = mg->get_nt(l_b) - 1 ; 
    int k_b = 0 ; 
    
    // Value of the enthalpy defining the surface of the star
    double ent_b = 0 ; 
    
    // Initialization of the enthalpy field to the constant value ent_c :
    
    ent = ent_c ; 
    ent.annule(nzet, nz-1) ; 
        
    // Corresponding profiles of baryon density, energy density and pressure
    
    equation_of_state() ; 
    
    // Initial metric 
    a_car = 1 ;	     // this value will remain unchanged in the Newtonian case
    beta_auto = 0 ;  // this value will remain unchanged in the Newtonian case
    

    // Auxiliary quantities
    // --------------------
    
    // Affine mapping for solving the Poisson equations
    Map_af mpaff(mp);	
        
    Param par_nul   ;	 // Param (null) for Map_af::poisson.

    Tenseur ent_jm1(mp) ;	// Enthalpy at previous step
    ent_jm1 = 0 ; 
    
    Tenseur source(mp) ; 
    Tenseur logn(mp) ; 
    Tenseur logn_quad(mp) ; 
    logn = 0 ; 
    logn_quad = 0 ; 

    Cmp dlogn(mp) ; 
    Cmp dbeta(mp) ; 
    
    double diff_ent = 1 ;     
    int mermax = 200 ;	    // Max number of iterations
    
    double alpha_r = 1 ; 

    //=========================================================================
    // 			Start of iteration
    //=========================================================================

    for(int mer=0 ; (diff_ent > precis) && (mer<mermax) ; mer++ ) {

	cout << "-----------------------------------------------" << endl ;
	cout << "step: " << mer << endl ;
	cout << "alpha_r: " << alpha_r << endl ;
	cout << "diff_ent = " << diff_ent << endl ;    

	//-----------------------------------------------------
	// Resolution of Poisson equation for ln(N)
	//-----------------------------------------------------

	// Matter part of ln(N)
	// --------------------
	if (relativistic) {
	    source = a_car * (ener + 3*press) ;
	}
	else {
	    source = nbar ; 
	}
	
	(source.set()).set_dzpuis(4) ; 
	
	source.set_std_base() ;	    // Sets the standard spectral bases. 
	
	logn_auto.set_etat_qcq() ; 

	mpaff.poisson(source(), par_nul, logn_auto.set()) ; 

	// NB: at this stage logn_auto is in machine units, not in c^2

	// Quadratic part of ln(N)
	// -----------------------

	if (relativistic) {
	    
	    mpaff.dsdr(logn(), dlogn) ; 
	    mpaff.dsdr(beta_auto(), dbeta) ; 
	    
	    source = - dlogn * dbeta ; 
		      
	    logn_quad.set_etat_qcq() ; 
	    
	    mpaff.poisson(source(), par_nul, logn_quad.set()) ; 
	    	    
	}

	//-----------------------------------------------------
	// Computation of the new radial scale
	//-----------------------------------------------------

	// alpha_r (r = alpha_r r') is determined so that the enthalpy
	// takes the requested value ent_b at the stellar surface
	
	double nu_mat0_b  = logn_auto()(l_b, k_b, j_b, i_b) ; 
	double nu_mat0_c  = logn_auto()(0, 0, 0, 0) ; 

	double nu_quad0_b  = logn_quad()(l_b, k_b, j_b, i_b) ; 
	double nu_quad0_c  = logn_quad()(0, 0, 0, 0) ; 

	double alpha_r2 = ( ent_c - ent_b - nu_quad0_b + nu_quad0_c )
				/ ( qpig*(nu_mat0_b - nu_mat0_c) ) ;

	alpha_r = sqrt(alpha_r2) ;


        // One domain inside the star:
        // --------------------------- 
	if(nzet==1) { 

        mpaff.homothetie( alpha_r ) ; 

        } 
				      
	//--------------------
	// First integral
	//--------------------

	// Gravitation potential in units c^2 :
	logn_auto = alpha_r2*qpig * logn_auto ;
	logn = logn_auto + logn_quad ;

	// Enthalpy in all space
	double logn_c = logn()(0, 0, 0, 0) ;
	ent = ent_c - logn() + logn_c ;
	
        // Two or more domains inside the star:
        // ------------------------------------ 
	if(nzet>1) { 

    // Parameters for the function Map_et::adapt
    // -----------------------------------------
    
    Param par_adapt ; 
    int nitermax = 100 ;  
    int niter ; 
    int adapt_flag = 1 ;    //  1 = performs the full computation, 
			    //  0 = performs only the rescaling by 
			    //      the factor alpha_r
    int nz_search = nzet + 1 ;  // Number of domains for searching the enthalpy
				//  isosurfaces

    int nzadapt = nzet ; 

    //cout << "no. of domains where the ent adjustment will be done: " << nzet << endl ;
    //cout << "ent limits: " << ent_limit << endl ; 

    double precis_adapt = 1.e-14 ; 
 
    double reg_map = 1. ; // 1 = regular mapping, 0 = contracting mapping

    par_adapt.add_int(nitermax, 0) ;   // maximum number of iterations to
				       // locate zeros by the secant method
    par_adapt.add_int(nzadapt, 1) ;    // number of domains where the adjustment 
				       // to the isosurfaces of ent is to be 
				       // performed
    par_adapt.add_int(nz_search, 2) ;  // number of domains to search for
				       // the enthalpy isosurface
    par_adapt.add_int(adapt_flag, 3) ; // 1 = performs the full computation, 
				       // 0 = performs only the rescaling by 
				       // the factor alpha_r
    par_adapt.add_int(j_b, 4) ;        // theta index of the collocation point 
			               // (theta_*, phi_*)
    par_adapt.add_int(k_b, 5) ;        // theta index of the collocation point 
			               // (theta_*, phi_*)

    par_adapt.add_int_mod(niter, 0) ;  // number of iterations actually used in 
				       // the secant method
    
    par_adapt.add_double(precis_adapt, 0) ; // required absolute precision in 
					// the determination of zeros by 
					// the secant method
    par_adapt.add_double(reg_map, 1) ;  // 1. = regular mapping, 0 = contracting mapping
    
    par_adapt.add_double(alpha_r, 2) ;	// factor by which all the radial 
					// distances will be multiplied 
    	   
    // Enthalpy values for the adaptation
    Tbl ent_limit(nzet) ; 
    if (pent_limit != 0x0) ent_limit = *pent_limit ; 
    	   
    par_adapt.add_tbl(ent_limit, 0) ;	// array of values of the field ent 
				        // to define the isosurfaces. 			   

      double* bornes = new double[nz+1] ;
      bornes[0] = 0. ; 

      for(int l=0; l<nz; l++) {
 
	bornes[l+1] = mpaff.get_alpha()[l]  + mpaff.get_beta()[l] ;     

      } 
      bornes[nz] = __infinity ; 
 
      Map_et mp0(*mg, bornes) ;
 
        mp0 = mpaff; 
        mp0.adapt(ent(), par_adapt) ; 

        //Map_af mpaff_prev (mpaff) ; 

        double alphal, betal ; 

        for(int l=0; l<nz; l++) { 

          alphal = mp0.get_alpha()[l] ; 
          betal  = mp0.get_beta()[l] ;
 
	  mpaff.set_alpha(alphal, l) ; 
          mpaff.set_beta(betal, l) ;

        } 
 

        //mbtest 
        int num_r1 = mg->get_nr(0) - 1;        
  
        cout << "Pressure difference:" << get_press()()(0,0,0,num_r1) - get_press()()(1,0,0,0) << endl ; 
	cout << "Difference in enthalpies at the domain boundary:" << endl ;
        cout << get_ent()()(0,0,0,num_r1) << endl ; 
        cout << get_ent()()(1,0,0,0) << endl ;

        cout << "Enthalpy difference: " << get_ent()()(0,0,0,num_r1) - get_ent()()(1,0,0,0) << endl ;

	// Computation of the enthalpy at the new grid points
        //----------------------------------------------------                     

        //mpaff.reevaluate(&mpaff_prev, nzet+1, ent.set()) ;

    } 

	//---------------------
	// Equation of state
	//---------------------
	
	equation_of_state() ; 
	
	if (relativistic) {
	    
	    //----------------------------
	    // Equation for beta = ln(AN)
	    //----------------------------
	    
	    mpaff.dsdr(logn(), dlogn) ; 
	    mpaff.dsdr(beta_auto(), dbeta) ; 
	    
	    source = 3 * qpig * a_car * press ;
	    
	    source = source() 
		     - 0.5 * (  dlogn * dlogn + dbeta * dbeta ) ;
	
	    source.set_std_base() ;	    // Sets the standard spectral bases. 

	    beta_auto.set_etat_qcq() ; 
	         
	    mpaff.poisson(source(), par_nul, beta_auto.set()) ; 
	    

	    // Metric coefficient A^2 update
	    
	    a_car = exp(2*(beta_auto - logn)) ;
   	    
	}
	
    // Relative difference with enthalpy at the previous step
    // ------------------------------------------------------
    
    diff_ent = norme( diffrel(ent(), ent_jm1()) ) / nzet ; 

    // Next step
    // ---------
    
    ent_jm1 = ent ; 


    }  // End of iteration loop 
    
    //=========================================================================
    // 			End of iteration
    //=========================================================================


    // The mapping is transfered to that of the star:
    // ----------------------------------------------
    mp = mpaff ; 
    
    
    // Sets value to all the Tenseur's of the star
    // -------------------------------------------
    
    // ... hydro 
    ent.annule(nzet, nz-1) ;	// enthalpy set to zero at the exterior of 
				// the star
    ener_euler = ener ; 
    s_euler = 3 * press ;
    gam_euler = 1 ;  
    u_euler = 0 ; 
    
    // ... metric
    nnn = exp( unsurc2 * logn ) ; 
    nnn.set_std_base() ;
    shift = 0 ; 
    a_car.set_std_base() ;

    // Info printing
    // -------------
    
    cout << endl 
     << "Characteristics of the star obtained by Etoile::equilibrium_spher : " 
     << endl 
     << "-----------------------------------------------------------------" 
     << endl ; 

    double ray = mp.val_r(l_b, 1., M_PI/2., 0) ; 
    cout << "Coordinate radius  :       " << ray / km << " km" << endl ; 

    double rcirc = ray * sqrt( a_car()(l_b, k_b, j_b, i_b) ) ; 
	
    double compact = qpig/(4.*M_PI) * mass_g() / rcirc ; 

    cout << "Circumferential radius R : " << rcirc/km  << " km" << endl ;
    cout << "Baryon mass :	     " << mass_b()/msol << " Mo" << endl ;
    cout << "Gravitational mass M :  " << mass_g()/msol << " Mo" << endl ;
    cout << "Compacity parameter GM/(c^2 R) : " << compact << endl ;


    //-----------------
    // Virial theorem
    //-----------------
    
    //... Pressure term

    source = qpig * a_car * sqrt(a_car) * s_euler ; 
    source.set_std_base() ;	    
    double vir_mat = source().integrale() ; 
    
    //... Gravitational term

    Cmp tmp = beta_auto() - logn() ; 

    source =  - ( logn().dsdr() * logn().dsdr() 
		      - 0.5 * tmp.dsdr() * tmp.dsdr() ) 
		    * sqrt(a_car())  ; 

    source.set_std_base() ;	    
    double vir_grav = source().integrale() ; 

    //... Relative error on the virial identity GRV3
    
    double grv3 = ( vir_mat + vir_grav ) / vir_mat ;

    cout << "Virial theorem GRV3 : " << endl ; 
    cout << "     3P term    : " << vir_mat << endl ; 
    cout << "     grav. term : " << vir_grav << endl ; 
    cout << "     relative error : " << grv3 << endl ; 
    
    if (nzet > 1) {
      cout.precision(10) ;

      for (int ltrans = 0; ltrans < nzet-1; ltrans++) {
	cout << endl << "Values at boundary between domains no. " << ltrans << " and " << 	ltrans+1 << " for theta = pi/2 and phi = 0 :" << endl ;

	double rt1 = mp.val_r(ltrans, 1., M_PI/2, 0.) ; 
	double rt2 = mp.val_r(ltrans+1, -1., M_PI/2, 0.) ; 
	cout << "   Coord. r [km] (left, right, rel. diff) : " 
	  << rt1 / km << "  " << rt2 / km << "  " << (rt2 - rt1)/rt1  << endl ; 
  
	int ntm1 = mg->get_nt(ltrans) - 1; 
	int nrm1 = mg->get_nr(ltrans) - 1 ; 
	double ent1 = ent()(ltrans, 0, ntm1, nrm1) ; 
	double ent2 = ent()(ltrans+1, 0, ntm1, 0) ; 
	  cout << "   Enthalpy (left, right, rel. diff) : " 
	    << ent1 << "  " << ent2 << "  " << (ent2-ent1)/ent1  << endl ; 

	double press1 = press()(ltrans, 0, ntm1, nrm1) ; 
	double press2 = press()(ltrans+1, 0, ntm1, 0) ; 
	  cout << "   Pressure (left, right, rel. diff) : " 
	  << press1 << "  " << press2 << "  " << (press2-press1)/press1 << endl ; 

	double nb1 = nbar()(ltrans, 0, ntm1, nrm1) ; 
	double nb2 = nbar()(ltrans+1, 0, ntm1, 0) ; 
	  cout << "   Baryon density (left, right, rel. diff) : " 
	  << nb1 << "  " << nb2 << "  " << (nb2-nb1)/nb1  << endl ; 
      }
    }


/*    double r_max = 1.2 * ray_eq() ; 
    des_profile(nbar(), 0., r_max, M_PI/2, 0., "n", "Baryon density") ; 
    des_profile(ener(), 0., r_max, M_PI/2, 0., "e", "Energy density") ; 
    des_profile(press(), 0., r_max, M_PI/2, 0., "p", "Pressure") ; 
    des_profile(ent(), 0., r_max, M_PI/2, 0., "H", "Enthalpy") ; 
*/
   
}
}