File: gravastar.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (375 lines) | stat: -rw-r--r-- 11,148 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
 *  Methods of class Gravastar
 *
 *    (see file gravastar.h for documentation).
 *
 */

/*
 *   Copyright (c) 2010 Frederic Vincent
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char gravastar_C[] = "$Header: /cvsroot/Lorene/C++/Source/Gravastar/gravastar.C,v 1.4 2016/09/19 15:26:23 j_novak Exp $" ;


// C++ headers
//#include <>

// C headers
#include <cmath>

// Lorene headers
#include "gravastar.h"
#include "eos.h"
#include "utilitaires.h"
#include "param.h"
#include "unites.h"
#include "nbr_spx.h"


                    //---------------------//
                    //     Constructor     //
                    //---------------------//

namespace Lorene {
Gravastar::Gravastar(Map& mpi, int nzet_i, const Eos& eos_i, const double rho_core_i) 
  : Star_rot(mpi,nzet_i,true,eos_i), rho_core(rho_core_i)
{} 

                            //------------//
			    // Destructor //
			    //------------//

Gravastar::~Gravastar(){
    del_deriv() ; 
}

                    //----------------------//
                    //     Eq. of state     //
                    //----------------------//

void Gravastar::equation_of_state() {

	Scalar ent_eos = ent ;


    // Slight rescale of the enthalpy field in case of 2 domains inside the
    //  star


        double epsilon = 1.e-12 ;

	const Mg3d* mg = mp.get_mg() ;
        int nz = mg->get_nzone() ;

        Mtbl xi(mg) ;
        xi.set_etat_qcq() ;
        for (int l=0; l<nz; l++) {
        	xi.t[l]->set_etat_qcq() ;
        	for (int k=0; k<mg->get_np(l); k++) {
        		for (int j=0; j<mg->get_nt(l); j++) {
        			for (int i=0; i<mg->get_nr(l); i++) {
        				xi.set(l,k,j,i) =
        					mg->get_grille3d(l)->x[i] ;
        			}
        		}
        	}

        }

     	Scalar fact_ent(mp) ;
     	fact_ent.allocate_all() ;
     	
     	fact_ent.set_domain(0) = 1 + epsilon * xi(0) * xi(0) ;
     	fact_ent.set_domain(1) = 1 - 0.25 * epsilon * (xi(1) - 1) * (xi(1) - 1) ;
     	
     	for (int l=nzet; l<nz; l++) {
     		fact_ent.set_domain(l) = 1 ;
     	}

    if (nzet > 1) {

    	if (nzet > 2) {
    	
    		cout << "Gravastar::equation_of_state: not ready yet for nzet > 2 !"
    		     << endl ;    	
    	}

    	ent_eos = fact_ent * ent_eos ;
    	ent_eos.std_spectral_base() ;
    }



    /*
      Call to the Eos
      There is no Eos inside the core where p=-rho=cst. Thus the most internal domain in treated separately.
      Inside the crust, the Eos is called domain by domain.
     */

    Scalar tempo(mp) ;

    //nbar.set_etat_qcq() ;
    nbar = 0 ;
    for (int l=1; l<nzet; l++) {

        Param par ;       // Paramater for multi-domain equation of state
        par.add_int(l) ;

	

        tempo =  eos.nbar_ent(ent_eos, 1, l, &par) ;
	//cout << "tempo eos= " << tempo << endl;
        nbar = nbar + tempo ;

    }

    //ener.set_etat_qcq() ;
    ener = rho_core ;
    ener.annule(1,nz-1);
    for (int l=1; l<nzet; l++) {

        Param par ;    // Paramater for multi-domain equation of state
        par.add_int(l) ;

        tempo =  eos.ener_ent(ent_eos, 1, l, &par) ;

        ener = ener + tempo ;

    }

    //press.set_etat_qcq() ;
    press = -rho_core ;
    press.annule(1,nz-1);
    for (int l=1; l<nzet; l++) {

        Param par ;     // Paramater for multi-domain equation of state
        par.add_int(l) ;

        tempo =  eos.press_ent(ent_eos, 1, l, &par) ;

        press = press + tempo ;

    }


    // Set the bases for spectral expansion
    nbar.std_spectral_base() ; 
    ener.std_spectral_base() ; 
    press.std_spectral_base() ; 

    // The derived quantities are obsolete
    del_deriv() ; 
    
}

// Printing
// --------

ostream& Gravastar::operator>>(ostream& ost) const {

  using namespace Unites ;
  
  ost << endl ; 
  
  ost << "Number of domains occupied by the star : " << nzet << endl ; 
  
  ost << "Equation of state : " << endl ; 
  ost << eos << endl ; 
  
  const Mg3d* mg = mp.get_mg() ; 
  int l_cr = 0, i_cr = mg->get_nr(l_cr) - 1, j_cr = mg->get_nt(l_cr) - 1, k_cr = 0 ; 

  ost << endl << "Inner crust enthalpy : " << ent.val_grid_point(l_cr, k_cr, j_cr, i_cr) << " c^2" << endl ; 
  
  ost << "Central proper energy density : " << ener.val_grid_point(0,0,0,0) 
      << " rho_nuc c^2" << endl ; 
  ost << "Central pressure : " << press.val_grid_point(0,0,0,0) 
      << " rho_nuc c^2" << endl ; 
  
  ost << endl ;
  ost << "Central lapse N :      " << nn.val_grid_point(0,0,0,0) <<  endl ; 
  //    ost << "Central value of lnq : " << lnq.val_grid_point(0,0,0,0) <<  endl ; 
  
  ost << endl 
      << "Coordinate equatorial radius (phi=0) a1 =    " 
      << ray_eq()/km << " km" << endl ;  
  ost << "Coordinate equatorial radius (phi=pi/2) a2 = " 
      << ray_eq_pis2()/km << " km" << endl ;  
  ost << "Coordinate equatorial radius (phi=pi):       " 
      << ray_eq_pi()/km << " km" << endl ;  
  ost << "Coordinate polar radius a3 =                 " 
      << ray_pole()/km << " km" << endl ;  
  ost << "Axis ratio a2/a1 = " << ray_eq_pis2() / ray_eq() 
      << "  a3/a1 = " << ray_pole() / ray_eq() << endl ; 	
  
  ///////////////////
  
  double omega_c = get_omega_c() ; 
  
  ost << endl ; 
  
  if (omega != __infinity) {
    ost << "Uniformly rotating star" << endl ; 
    ost << "-----------------------" << endl ; 
     
    double freq = omega / (2.*M_PI) ;  
    ost << "Omega : " << omega * f_unit 
	<< " rad/s     f : " << freq * f_unit << " Hz" << endl ; 
    ost << "Rotation period : " << 1000. / (freq * f_unit) << " ms"
	<< endl ;
    
  }
  else {
    ost << "Differentially rotating star" << endl ; 
    ost << "----------------------------" << endl ; 
    
    double freq = omega_c / (2.*M_PI) ;  
    ost << "Central value of Omega : " << omega_c * f_unit 
	<< " rad/s     f : " << freq * f_unit << " Hz" << endl ; 
    ost << "Central rotation period : " << 1000. / (freq * f_unit) << " ms"
	<< endl ;
  }

  // double compact = qpig/(4.*M_PI) * mass_g() / r_circ() ; 
  //ost << "Compactness G M_g /(c^2 R_circ) : " << compact << endl ;     
  
  double nphi_c = nphi.val_grid_point(0, 0, 0, 0) ;
  if ( (omega_c==0) && (nphi_c==0) ) {
    ost << "Central N^phi :               " << nphi_c << endl ;
  }
  else{
    ost << "Central N^phi/Omega :         " << nphi_c / omega_c << endl ;
  }
  
  ost << "Error on the virial identity GRV2 : " <<  grv2() << endl ; 
  double xgrv3 = grv3(&ost) ; 
  ost << "Error on the virial identity GRV3 : " << xgrv3 << endl ; 
  
  // cout << "ICI" << endl;
  double mom_quad_38si = mom_quad() * rho_unit * (pow(r_unit, double(5.)) 
  					  / double(1.e38) ) ;
//cout << "LA" << endl;
  ost << "Quadrupole moment Q : " << mom_quad_38si << " 10^38 kg m^2"
      << endl ; 

  /*ost << "Q / (M R_circ^2) :       " 
    << mom_quad() / ( mass_g() * pow( r_circ(), 2. ) ) << endl ; 
  ost << "c^4 Q / (G^2 M^3) :      " 
      << mom_quad() / ( pow(qpig/(4*M_PI), 2.) * pow(mass_g(), 3.) ) 
      << endl ; */
  
  ost << "Angular momentum J :      " 
      << angu_mom()/( qpig / (4* M_PI) * msol*msol) << " G M_sol^2 / c"
      << endl ; 
  /*  ost << "c J / (G M^2) :           " 
      << angu_mom()/( qpig / (4* M_PI) * pow(mass_g(), 2.) ) << endl ;    	 	*/
  
if (omega != __infinity) {
   double mom_iner = angu_mom() / omega ; 
   double mom_iner_38si = mom_iner * rho_unit * (pow(r_unit, double(5.)) 
						  / double(1.e38) ) ; 
   ost << "Moment of inertia:       " << mom_iner_38si << " 10^38 kg m^2"
	<< endl ; 
 }
  
  ost << "Ratio T/W :            " << tsw() << endl ; 
  ost << "Circumferential equatorial radius R_circ :     " 
      << r_circ()/km << " km" << endl ;  
  ost << "Coordinate equatorial radius r_eq : " << ray_eq()/km << " km" 
      << endl ;  
  ost << "Flattening r_pole/r_eq :        " << aplat() << endl ; 

  //cout << "ICI" << endl;
  
  int lsurf = nzet - 1; 
  int nt = mp.get_mg()->get_nt(lsurf) ; 
  int nr = mp.get_mg()->get_nr(lsurf) ; 
  ost << "Equatorial value of the velocity U:         " 
      << uuu.val_grid_point(nzet-1, 0, nt-1, nr-1) << " c" << endl ; 
  ost << "Redshift at the equator (forward) : " << z_eqf() << endl ; 
  ost << "Redshift at the equator (backward): " << z_eqb() << endl ; 
  ost << "Redshift at the pole              : " << z_pole() << endl ; 
  
  
  ost << "Central value of log(N)        : " 
      << logn.val_grid_point(0, 0, 0, 0) << endl ; 
  
  ost << "Central value of dzeta=log(AN) : " 
      << dzeta.val_grid_point(0, 0, 0, 0) << endl ; 
  
  if ( (omega_c==0) && (nphi_c==0) ) {
    ost << "Central N^phi :               " << nphi_c << endl ;
  }
  else{
    ost << "Central N^phi/Omega :         " << nphi_c / omega_c << endl ;
  }
  
  ost << "  ... w_shift (NB: components in the star Cartesian frame) [c] :  "
      << endl  
      << w_shift(1).val_grid_point(0, 0, 0, 0) << "  " 
      << w_shift(2).val_grid_point(0, 0, 0, 0) << "  " 
      << w_shift(3).val_grid_point(0, 0, 0, 0) << endl ; 
  
  ost << "Central value of khi_shift [km c] : " 
      << khi_shift.val_grid_point(0, 0, 0, 0) / km << endl ; 
  
  ost << "Central value of B^2 : " << b_car.val_grid_point(0,0,0,0) <<  endl ; 
  
  Tbl diff_a_b = diffrel( a_car, b_car ) ;
  ost << 
    "Relative discrepancy in each domain between the metric coef. A^2 and B^2 : "
      << endl ;
  for (int l=0; l<diff_a_b.get_taille(); l++) {
    ost << diff_a_b(l) << "  " ;
  }
  ost << endl ;
  
  // Approximate formula for R_isco = 6 R_g (1-(2/3)^1.5 j )
  // up to the first order in j
  
  /*double jdimless = angu_mom() / ( ggrav * pow(mass_g(), 2.) ) ;
  double r_grav = ggrav * mass_g() ;
  double r_isco_appr = 6. * r_grav * ( 1. - pow(2./3.,1.5) * jdimless ) ;*/
  
  // Approximate formula for the ISCO frequency
  //   freq_ms = 6^{-1.5}/2pi/R_g (1+11*6^(-1.5) j )
  // up to the first order in j

  /*  double f_isco_appr = ( 1. + 11. /6. /sqrt(6.) * jdimless ) / r_grav /
      (12. * M_PI ) / sqrt(6.) ;*/
  
  /*  ost << endl << "Innermost stable circular orbit (ISCO) : " << endl ;
  double xr_isco = r_isco(&ost) ;
  ost <<"    circumferential radius r_isco = "
      << xr_isco / km << " km" << endl ;
  ost <<"     (approx. 6M + 1st order in j : "
      << r_isco_appr / km << " km)" << endl ;
  ost <<"                      (approx. 6M : "
      << 6. * r_grav / km << " km)" << endl ;
  ost <<"    orbital frequency f_isco = "
      << f_isco() * f_unit << " Hz" << endl ;
  ost <<"     (approx. 1st order in j : "
  << f_isco_appr * f_unit << " Hz)" << endl ;*/
  
  
  return ost ;
  
}
}