1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
/*
* Method of class Hole_bhns to compute black-hole metric quantities
* in a black hole-neutron star binary
*
* (see file hole_bhns.h for documentation).
*
*/
/*
* Copyright (c) 2005-2007 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char hole_bhns_equilibrium_C[] = "$Header: /cvsroot/Lorene/C++/Source/Hole_bhns/hole_bhns_equilibrium.C,v 1.4 2014/10/13 08:53:00 j_novak Exp $" ;
/*
* $Id: hole_bhns_equilibrium.C,v 1.4 2014/10/13 08:53:00 j_novak Exp $
* $Log: hole_bhns_equilibrium.C,v $
* Revision 1.4 2014/10/13 08:53:00 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.3 2014/10/06 15:13:10 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.2 2008/05/15 19:05:12 k_taniguchi
* Change of some parameters.
*
* Revision 1.1 2007/06/22 01:24:36 k_taniguchi
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Hole_bhns/hole_bhns_equilibrium.C,v 1.4 2014/10/13 08:53:00 j_novak Exp $
*
*/
// C++ headers
//#include <>
// C headers
#include <cmath>
// Lorene headers
#include "hole_bhns.h"
#include "cmp.h"
#include "tenseur.h"
#include "param.h"
#include "eos.h"
#include "unites.h"
#include "proto.h"
#include "utilitaires.h"
//#include "graphique.h"
namespace Lorene {
void Hole_bhns::equilibrium_bhns(int mer, int mermax_bh,
int filter_r, int filter_r_s, int filter_p_s,
double x_rot, double y_rot, double precis,
double omega_orb, double resize_bh,
const Tbl& fact_resize, Tbl& diff) {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
// Initializations
// ---------------
const Mg3d* mg = mp.get_mg() ;
int nz = mg->get_nzone() ; // total number of domains
// Re-adjustment of the boundary of domains
// ----------------------------------------
double rr_in_1 = mp.val_r(1, -1., M_PI/2, 0.) ;
/*
// Three shells outside the shell including NS
// -------------------------------------------
// Resize of the outer boundary of the shell including the NS
double rr_out_nm5 = mp.val_r(nz-5, 1., M_PI/2., 0.) ;
mp.resize(nz-5, rr_in_1/rr_out_nm5 * fact_resize(1)) ;
// Resize of the innner boundary of the shell including the NS
double rr_out_nm6 = mp.val_r(nz-6, 1., M_PI/2., 0.) ;
mp.resize(nz-6, rr_in_1/rr_out_nm6 * fact_resize(0)) ;
if (mer % 2 == 0) {
// Resize of the domain N-2
double rr_out_nm2 = mp.val_r(nz-2, 1., M_PI/2., 0.) ;
mp.resize(nz-2, 8. * rr_in_1 * fact_resize(1) / rr_out_nm2) ;
// Resize of the domain N-3
double rr_out_nm3 = mp.val_r(nz-3, 1., M_PI/2., 0.) ;
mp.resize(nz-3, 4. * rr_in_1 * fact_resize(1) / rr_out_nm3) ;
// Resize of the domain N-4
double rr_out_nm4 = mp.val_r(nz-4, 1., M_PI/2., 0.) ;
mp.resize(nz-4, 2. * rr_in_1 * fact_resize(1) / rr_out_nm4) ;
if (nz > 7) {
// Resize of the domain 1
double rr_out_1 = mp.val_r(1, 1., M_PI/2., 0.) ;
mp.resize(1, rr_in_1/rr_out_1 * resize_bh) ;
if (nz > 8) {
// Resize of the domain from 2 to N-7
double rr_out_1_new = mp.val_r(1, 1., M_PI/2., 0.) ;
double rr_out_nm6_new = mp.val_r(nz-6, 1., M_PI/2., 0.) ;
double dr = (rr_out_nm6_new - rr_out_1_new) / double(nz - 7) ;
for (int i=1; i<nz-7; i++) {
double rr = rr_out_1_new + i * dr ;
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr/rr_out_ip1) ;
}
}
}
}
*/
/*
// Two shells outside the shell including NS
// -----------------------------------------
// Resize of the outer boundary of the shell including the NS
double rr_out_nm4 = mp.val_r(nz-4, 1., M_PI/2., 0.) ;
mp.resize(nz-4, rr_in_1/rr_out_nm4 * fact_resize(1)) ;
// Resize of the innner boundary of the shell including the NS
double rr_out_nm5 = mp.val_r(nz-5, 1., M_PI/2., 0.) ;
mp.resize(nz-5, rr_in_1/rr_out_nm5 * fact_resize(0)) ;
// if (mer % 2 == 0) {
// Resize of the domain N-2
double rr_out_nm2 = mp.val_r(nz-2, 1., M_PI/2., 0.) ;
mp.resize(nz-2, 3. * rr_in_1 * fact_resize(1) / rr_out_nm2) ;
// Resize of the domain N-3
double rr_out_nm3 = mp.val_r(nz-3, 1., M_PI/2., 0.) ;
mp.resize(nz-3, 1.5 * rr_in_1 * fact_resize(1) / rr_out_nm3) ;
if (nz > 6) {
// Resize of the domain 1
double rr_out_1 = mp.val_r(1, 1., M_PI/2., 0.) ;
mp.resize(1, rr_in_1/rr_out_1 * resize_bh) ;
if (nz > 7) {
// Resize of the domain from 2 to N-6
double rr_out_nm5_new = mp.val_r(nz-5, 1., M_PI/2., 0.) ;
for (int i=1; i<nz-6; i++) {
double rr_out_i = mp.val_r(i, 1., M_PI/2., 0.) ;
double rr_mid = rr_out_i
+ (rr_out_nm5_new - rr_out_i) / double(nz - 5 - i) ;
double rr_2timesi = 2. * rr_out_i ;
if (rr_2timesi < rr_mid) {
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr_2timesi / rr_out_ip1) ;
}
else {
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr_mid / rr_out_ip1) ;
} // End of else
} // End of i loop
} // End of (nz > 7) loop
} // End of (nz > 6) loop
// } // End of (mer % 2) loop
*/
// One shell outside the shell including NS
// ----------------------------------------
// Resize of the outer boundary of the shell including the NS
double rr_out_nm3 = mp.val_r(nz-3, 1., M_PI/2., 0.) ;
mp.resize(nz-3, rr_in_1/rr_out_nm3 * fact_resize(1)) ;
// Resize of the innner boundary of the shell including the NS
double rr_out_nm4 = mp.val_r(nz-4, 1., M_PI/2., 0.) ;
mp.resize(nz-4, rr_in_1/rr_out_nm4 * fact_resize(0)) ;
// if (mer % 2 == 0) {
// Resize of the domain N-2
double rr_out_nm2 = mp.val_r(nz-2, 1., M_PI/2., 0.) ;
mp.resize(nz-2, 2. * rr_in_1 * fact_resize(1) / rr_out_nm2) ;
if (nz > 5) {
// Resize of the domain 1
double rr_out_1 = mp.val_r(1, 1., M_PI/2., 0.) ;
mp.resize(1, rr_in_1/rr_out_1 * resize_bh) ;
if (nz > 6) {
// Resize of the domain from 2 to N-5
double rr_out_nm4_new = mp.val_r(nz-4, 1., M_PI/2., 0.) ;
for (int i=1; i<nz-5; i++) {
double rr_out_i = mp.val_r(i, 1., M_PI/2., 0.) ;
double rr_mid = rr_out_i
+ (rr_out_nm4_new - rr_out_i) / double(nz - 4 - i) ;
double rr_2timesi = 2. * rr_out_i ;
if (rr_2timesi < rr_mid) {
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr_2timesi / rr_out_ip1) ;
}
else {
double rr_out_ip1 = mp.val_r(i+1, 1., M_PI/2., 0.) ;
mp.resize(i+1, rr_mid / rr_out_ip1) ;
} // End of else
} // End of i loop
} // End of (nz > 6) loop
} // End of (nz > 5) loop
// } // End of (mer % 2) loop
// Inner boundary condition
// ------------------------
Valeur bc_lapc(mg->get_angu()) ;
Valeur bc_conf(mg->get_angu()) ;
Valeur bc_shif_x(mg->get_angu()) ;
Valeur bc_shif_y(mg->get_angu()) ;
Valeur bc_shif_z(mg->get_angu()) ;
// Error indicators
// ----------------
double& diff_lapconf = diff.set(0) ;
double& diff_confo = diff.set(1) ;
double& diff_shift_x = diff.set(2) ;
double& diff_shift_y = diff.set(3) ;
double& diff_shift_z = diff.set(4) ;
Scalar lapconf_jm1 = lapconf_auto_rs ; // Lapconf function at previous step
Scalar confo_jm1 = confo_auto_rs ; // Conformal factor at preious step
Vector shift_jm1 = shift_auto_rs ; // Shift vector at previous step
// Auxiliary quantities
// --------------------
Scalar source_lapconf(mp) ;
Scalar source_confo(mp) ;
Vector source_shift(mp, CON, mp.get_bvect_cart()) ;
Scalar lapconf_m1(mp) ; // = lapconf_auto_rs + 0.5
Scalar confo_m1(mp) ; // = confo_auto_rs + 0.5
double mass = ggrav * mass_bh ;
Scalar rr(mp) ;
rr = mp.r ;
rr.std_spectral_base() ;
Scalar st(mp) ;
st = mp.sint ;
st.std_spectral_base() ;
Scalar ct(mp) ;
ct = mp.cost ;
ct.std_spectral_base() ;
Scalar sp(mp) ;
sp = mp.sinp ;
sp.std_spectral_base() ;
Scalar cp(mp) ;
cp = mp.cosp ;
cp.std_spectral_base() ;
Vector ll(mp, CON, mp.get_bvect_cart()) ;
ll.set_etat_qcq() ;
ll.set(1) = st % cp ;
ll.set(2) = st % sp ;
ll.set(3) = ct ;
ll.std_spectral_base() ;
Vector dlappsi(mp, COV, mp.get_bvect_cart()) ;
for (int i=1; i<=3; i++) {
dlappsi.set(i) = lapconf_auto_rs.deriv(i) + d_lapconf_comp(i)
- 7. * lapconf_tot % (confo_auto_rs.deriv(i) + d_confo_comp(i))
/ confo_tot ;
}
dlappsi.std_spectral_base() ;
//======================================//
// Start of iteration //
//======================================//
for (int mer_bh=0; mer_bh<mermax_bh; mer_bh++) {
cout << "--------------------------------------------------" << endl ;
cout << "step: " << mer_bh << endl ;
cout << "diff_lapconf = " << diff_lapconf << endl ;
cout << "diff_confo = " << diff_confo << endl ;
cout << "diff_shift : x = " << diff_shift_x
<< " y = " << diff_shift_y << " z = " << diff_shift_z << endl ;
if (kerrschild) {
cout << "!!!!! WARNING: Not yet available !!!!!" << endl ;
abort() ;
} // End of Kerr-Schild
else { // Isotropic coordinates with the maximal slicing
// Sets C/M^2 for each case of the lapse boundary condition
// --------------------------------------------------------
double cc ;
if (bc_lapconf_nd) { // Neumann boundary condition
if (bc_lapconf_fs) { // First condition
// d(\alpha \psi)/dr = 0
// ---------------------
cc = 2. * (sqrt(13.) - 1.) / 3. ;
}
else { // Second condition
// d(\alpha \psi)/dr = (\alpha \psi)/(2 rah)
// -----------------------------------------
cc = 4. / 3. ;
}
}
else { // Dirichlet boundary condition
if (bc_lapconf_fs) { // First condition
// (\alpha \psi) = 1/2
// -------------------
cout << "!!!!! WARNING: Not yet prepared !!!!!" << endl ;
abort() ;
}
else { // Second condition
// (\alpha \psi) = 1/sqrt(2.) \psi_KS
// ----------------------------------
cout << "!!!!! WARNING: Not yet prepared !!!!!" << endl ;
abort() ;
// cc = 2. * sqrt(2.) ;
}
}
Scalar r_are(mp) ;
r_are = r_coord(bc_lapconf_nd, bc_lapconf_fs) ;
r_are.std_spectral_base() ;
Scalar lapbh_iso(mp) ;
lapbh_iso = sqrt(1. - 2.*mass/r_are/rr
+ cc*cc*pow(mass/r_are/rr,4.)) ;
lapbh_iso.std_spectral_base() ;
lapbh_iso.annule_domain(0) ;
lapbh_iso.raccord(1) ;
Scalar psibh_iso(mp) ;
psibh_iso = sqrt(r_are) ;
psibh_iso.std_spectral_base() ;
psibh_iso.annule_domain(0) ;
psibh_iso.raccord(1) ;
Scalar dlapbh_iso(mp) ;
dlapbh_iso = mass/r_are/rr - 2.*cc*cc*pow(mass/r_are/rr,4.) ;
dlapbh_iso.std_spectral_base() ;
dlapbh_iso.annule_domain(0) ;
dlapbh_iso.raccord(1) ;
//---------------------------------------------------------------//
// Resolution of the Poisson equation for the lapconf function //
//---------------------------------------------------------------//
// Source term
// -----------
Scalar tmpl1(mp) ;
tmpl1 = 0.875 * lapconf_tot % taij_quad_auto
/ pow(confo_tot, 8.) ;
tmpl1.std_spectral_base() ; // dzpuis = 4
tmpl1.annule_domain(0) ;
tmpl1.raccord(1) ;
Scalar tmpl2(mp) ;
tmpl2 = 0.875 * (lapconf_comp+0.5) * taij_quad_comp
* (pow(confo_tot/(confo_comp+0.5),6.)*(lapconf_comp+0.5)
/lapconf_tot - 1.)
/ pow(confo_comp+0.5,8.) ;
tmpl2.std_spectral_base() ;
tmpl2.annule_domain(0) ; // dzpuis = 4
tmpl2.raccord(1) ;
Scalar tmpl3(mp) ;
tmpl3 = 5.25 * cc * cc * pow(mass,4.) * lapbh_iso
* (pow(confo_tot,6.)*lapbh_iso/lapconf_tot - pow(psibh_iso,5.))
/ pow(r_are*rr,6.) ;
tmpl3.std_spectral_base() ;
tmpl3.annule_domain(0) ;
tmpl3.raccord(1) ;
tmpl3.inc_dzpuis(4) ; // dzpuis : 0 -> 4
source_lapconf = tmpl1 + tmpl2 + tmpl3 ;
source_lapconf.std_spectral_base() ;
source_lapconf.annule_domain(0) ;
source_lapconf.raccord(1) ;
/*
if (source_lapconf.get_dzpuis() != 4) {
source_lapconf.set_dzpuis(4) ;
}
source_lapconf.std_spectral_base() ;
*/
if (filter_r != 0) {
if (source_lapconf.get_etat() != ETATZERO) {
source_lapconf.filtre(filter_r) ;
}
}
bc_lapc = bc_lapconf() ;
lapconf_m1.set_etat_qcq() ;
if (bc_lapconf_nd) {
lapconf_m1 = source_lapconf.poisson_neumann(bc_lapc, 0) ;
}
else {
lapconf_m1 = source_lapconf.poisson_dirichlet(bc_lapc, 0) ;
}
// Re-construction of the lapconf function
// ---------------------------------------
lapconf_auto_rs = lapconf_m1 - 0.5 ;
lapconf_auto_rs.annule_domain(0) ;
lapconf_auto_rs.raccord(1) ;
lapconf_auto = lapconf_auto_rs + lapconf_auto_bh ;
lapconf_auto.annule_domain(0) ; // lapconf_auto,_comp->0.5 (r->inf)
lapconf_auto.raccord(1) ; // lapconf_tot -> 1 (r->inf)
//---------------------------------------------------------------//
// Resolution of the Poisson equation for the conformal factor //
//---------------------------------------------------------------//
// Source term
// -----------
Scalar tmpc1 = - 0.125 * taij_quad_auto / pow(confo_tot, 7.) ;
tmpc1.std_spectral_base() ; // dzpuis = 4
tmpc1.annule_domain(0) ;
tmpc1.raccord(1) ;
Scalar tmpc2 = 0.75 * cc * cc * pow(mass,4.)
* (pow(psibh_iso,5.)
- pow(confo_tot,7.)*lapbh_iso*lapbh_iso
/lapconf_tot/lapconf_tot)
/ pow(r_are*rr,6.) ;
tmpc2.std_spectral_base() ;
tmpc2.annule_domain(0) ;
tmpc2.raccord(1) ;
tmpc2.inc_dzpuis(4) ; // dzpuis : 0 -> 4
Scalar tmpc3 = 0.125 * taij_quad_comp
* (1. - pow(confo_tot/(confo_comp+0.5),7.)
*pow((lapconf_comp+0.5)/lapconf_tot,2.))
/ pow(confo_comp+0.5, 7.) ;
tmpc3.std_spectral_base() ; // dzpuis = 4
tmpc3.annule_domain(0) ;
tmpc3.raccord(1) ;
source_confo = tmpc1 + tmpc2 + tmpc3 ;
source_confo.std_spectral_base() ;
source_confo.annule_domain(0) ;
source_confo.raccord(1) ;
/*
if (source_confo.get_dzpuis() != 4) {
source_confo.set_dzpuis(4) ;
}
source_confo.std_spectral_base() ;
*/
if (filter_r != 0) {
if (source_confo.get_etat() != ETATZERO) {
source_confo.filtre(filter_r) ;
}
}
bc_conf = bc_confo(omega_orb, x_rot, y_rot) ;
confo_m1.set_etat_qcq() ;
confo_m1 = source_confo.poisson_neumann(bc_conf, 0) ;
// Re-construction of the conformal factor
// ---------------------------------------
confo_auto_rs = confo_m1 - 0.5 ;
confo_auto_rs.annule_domain(0) ;
confo_auto_rs.raccord(1) ;
confo_auto = confo_auto_rs + confo_auto_bh ;
confo_auto.annule_domain(0) ; // confo_auto,_comp->0.5 (r->inf)
confo_auto.raccord(1) ; // confo_tot -> 1 (r->inf)
//-----------------------------------------------------------//
// Resolution of the Poisson equation for the shift vector //
//-----------------------------------------------------------//
// Source term
// -----------
Vector dlapconf(mp, COV, mp.get_bvect_cart()) ;
for (int i=1; i<=3; i++) {
dlapconf.set(i) = lapconf_auto_rs.deriv(i)
- 7. * lapconf_tot % confo_auto_rs.deriv(i)
/ confo_tot ;
}
dlapconf.std_spectral_base() ;
Vector tmps1 = 2. * contract(taij_auto_rs, 1, dlappsi, 0)
/ pow(confo_tot, 7.)
+ 2. * contract(taij_comp, 1, dlapconf, 0)
* (lapconf_comp+0.5) / lapconf_tot / pow(confo_comp+0.5, 7.) ;
tmps1.std_spectral_base() ; // dzpuis = 4
tmps1.annule_domain(0) ;
for (int i=1; i<=3; i++) {
tmps1.set(i).raccord(1) ;
}
Vector tmps2(mp, CON, mp.get_bvect_cart()) ;
tmps2.set_etat_qcq() ;
for (int i=1; i<=3; i++) {
tmps2.set(i) = 2. * psibh_iso
* (dlapbh_iso + 0.5*(lapbh_iso - 1.)
*(lapbh_iso - 7.*lapconf_tot/confo_tot))
* (taij_tot_rs(i,1)%ll(1) + taij_tot_rs(i,2)%ll(2)
+ taij_tot_rs(i,3)%ll(3)) / pow(confo_tot,7.) / rr ;
}
tmps2.std_spectral_base() ;
tmps2.annule_domain(0) ;
for (int i=1; i<=3; i++) {
tmps2.set(i).raccord(1) ;
}
for (int i=1; i<=3; i++) {
(tmps2.set(i)).inc_dzpuis(2) ; // dzpuis : 2 -> 4
}
Vector tmps3(mp, CON, mp.get_bvect_cart()) ;
tmps3.set_etat_qcq() ;
for (int i=1; i<=3; i++) {
tmps3.set(i) = 2. * cc * mass * mass * lapbh_iso
* (dlappsi(i) - 3.*ll(i)*(ll(1)%dlappsi(1)
+ ll(2)%dlappsi(2)
+ ll(3)%dlappsi(3)))
/ lapconf_tot / pow(r_are*rr,3.) ;
}
tmps3.std_spectral_base() ;
tmps3.annule_domain(0) ;
for (int i=1; i<=3; i++) {
tmps3.set(i).raccord(1) ;
}
for (int i=1; i<=3; i++) {
(tmps3.set(i)).inc_dzpuis(2) ; // dzpuis : 2 -> 4
}
Vector tmps4 = 4. * cc * mass * mass
* (dlapbh_iso * (1. - psibh_iso*lapbh_iso/lapconf_tot)
+ 0.5 * lapbh_iso * (lapbh_iso - 1.)
* (6.*(psibh_iso/confo_tot - 1.)
+ psibh_iso*(1./confo_tot - lapbh_iso/lapconf_tot)))
* ll / rr / pow(r_are*rr,3.) ;
tmps4.std_spectral_base() ;
tmps4.annule_domain(0) ;
for (int i=1; i<=3; i++) {
tmps4.set(i).raccord(1) ;
}
for (int i=1; i<=3; i++) {
(tmps4.set(i)).inc_dzpuis(4) ; // dzpuis : 0 -> 4
}
Vector dlappsi_comp(mp, COV, mp.get_bvect_cart()) ;
for (int i=1; i<=3; i++) {
dlappsi_comp.set(i) = ((lapconf_comp+0.5)/lapconf_tot - 1.)
* d_lapconf_comp(i)
- 7. * (lapconf_comp+0.5) * ((confo_comp+0.5)/confo_tot - 1.)
* d_confo_comp(i) / (confo_comp+0.5) ;
}
dlappsi_comp.std_spectral_base() ;
Vector tmps5 = 2. * contract(taij_comp, 1, dlappsi_comp, 0)
/ pow(confo_comp+0.5, 7.) ;
tmps5.std_spectral_base() ;
tmps5.annule_domain(0) ;
for (int i=1; i<=3; i++) {
tmps5.set(i).raccord(1) ;
}
source_shift = tmps1 + tmps2 + tmps3 + tmps4 + tmps5 ;
source_shift.std_spectral_base() ;
source_shift.annule_domain(0) ;
for (int i=1; i<=3; i++) {
source_shift.set(i).raccord(1) ;
}
if (filter_r_s != 0) {
for (int i=1; i<=3; i++) {
if (source_shift(i).get_etat() != ETATZERO)
source_shift.set(i).filtre(filter_r_s) ;
}
}
if (filter_p_s != 0) {
for (int i=1; i<=3; i++) {
if (source_shift(i).get_etat() != ETATZERO) {
source_shift.set(i).filtre_phi(filter_p_s, nz-1) ;
/*
for (int l=1; l<nz; l++) {
source_shift.set(i).filtre_phi(filter_p_s, l) ;
}
*/
}
}
}
/*
for (int i=1; i<=3; i++) {
if (source_shift(i).dz_nonzero()) {
assert( source_shift(i).get_dzpuis() == 4 ) ;
}
else {
(source_shift.set(i)).set_dzpuis(4) ;
}
}
*/
Tenseur source_p(mp, 1, CON, mp.get_bvect_cart()) ;
source_p.set_etat_qcq() ;
for (int i=0; i<3; i++) {
source_p.set(i) = Cmp(source_shift(i+1)) ;
}
Tenseur resu_p(mp, 1, CON, mp.get_bvect_cart()) ;
resu_p.set_etat_qcq() ;
for (int i=0; i<3; i++) {
resu_p.set(i) = Cmp(shift_auto_rs(i+1)) ;
}
// Boundary condition
bc_shif_x = bc_shift_x(omega_orb, y_rot) ;
bc_shif_y = bc_shift_y(omega_orb, x_rot) ;
bc_shif_z = bc_shift_z() ;
poisson_vect_frontiere(1./3., source_p, resu_p,
bc_shif_x, bc_shif_y, bc_shif_z,
0, precis, 7) ;
for (int i=1; i<=3; i++) {
shift_auto_rs.set(i) = resu_p(i-1) ;
}
shift_auto_rs.std_spectral_base() ;
shift_auto_rs.annule_domain(0) ;
for (int i=1; i<=3; i++) {
shift_auto_rs.set(i).raccord(1) ;
}
shift_auto = shift_auto_rs + shift_auto_bh ;
shift_auto.std_spectral_base() ;
shift_auto.annule_domain(0) ;
for (int i=1; i<=3; i++) {
shift_auto.set(i).raccord(1) ;
}
} // End of isotropic
//------------------------------------------------//
// Relative difference in the metric quantities //
//------------------------------------------------//
// Difference is calculated only outside the inner boundary.
Tbl tdiff_lapconf = diffrel(lapconf_auto_rs, lapconf_jm1) ;
tdiff_lapconf.set(0) = 0. ;
cout << "Relative difference in the lapconf function : " << endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_lapconf(l) << " " ;
}
cout << endl ;
diff_lapconf = tdiff_lapconf(1) ;
for (int l=2; l<nz; l++) {
diff_lapconf += tdiff_lapconf(l) ;
}
diff_lapconf /= nz ;
Tbl tdiff_confo = diffrel(confo_auto_rs, confo_jm1) ;
tdiff_confo.set(0) = 0. ;
cout << "Relative difference in the conformal factor : " << endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_confo(l) << " " ;
}
cout << endl ;
diff_confo = tdiff_confo(1) ;
for (int l=2; l<nz; l++) {
diff_confo += tdiff_confo(l) ;
}
diff_confo /= nz ;
Tbl tdiff_shift_x = diffrel(shift_auto_rs(1), shift_jm1(1)) ;
tdiff_shift_x.set(0) = 0. ;
cout << "Relative difference in the shift vector (x) : " << endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_x(l) << " " ;
}
cout << endl ;
diff_shift_x = tdiff_shift_x(1) ;
for (int l=2; l<nz; l++) {
diff_shift_x += tdiff_shift_x(l) ;
}
diff_shift_x /= nz ;
Tbl tdiff_shift_y = diffrel(shift_auto_rs(2), shift_jm1(2)) ;
tdiff_shift_y.set(0) = 0. ;
cout << "Relative difference in the shift vector (y) : " << endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_y(l) << " " ;
}
cout << endl ;
diff_shift_y = tdiff_shift_y(1) ;
for (int l=2; l<nz; l++) {
diff_shift_y += tdiff_shift_y(l) ;
}
diff_shift_y /= nz ;
Tbl tdiff_shift_z = diffrel(shift_auto_rs(3), shift_jm1(3)) ;
tdiff_shift_z.set(0) = 0. ;
cout << "Relative difference in the shift vector (z) : " << endl ;
for (int l=0; l<nz; l++) {
cout << tdiff_shift_z(l) << " " ;
}
cout << endl ;
diff_shift_z = tdiff_shift_z(1) ;
for (int l=2; l<nz; l++) {
diff_shift_z += tdiff_shift_z(l) ;
}
diff_shift_z /= nz ;
/*
des_profile( lapconf_auto_rs, 0., 10.,
M_PI/2., 0., "Residual lapconf function of BH",
"Lapconf (theta=pi/2, phi=0)" ) ;
des_profile( lapconf_auto_bh, 0., 10.,
M_PI/2., 0., "Analytic lapconf function of BH",
"Lapconf (theta=pi/2, phi=0)" ) ;
des_profile( lapconf_auto, 0., 10.,
M_PI/2., 0., "Self lapconf function of BH",
"Lapconf (theta=pi/2, phi=0)" ) ;
des_profile( lapconf_tot, 0., 10.,
M_PI/2., 0., "Total lapconf function of BH",
"Lapconf (theta=pi/2, phi=0)" ) ;
des_profile( confo_auto_rs, 0., 10.,
M_PI/2., 0., "Residual conformal factor of BH",
"Confo (theta=pi/2, phi=0)" ) ;
des_profile( confo_auto_bh, 0., 10.,
M_PI/2., 0., "Analytic conformal factor of BH",
"Confo (theta=pi/2, phi=0)" ) ;
des_profile( confo_auto, 0., 10.,
M_PI/2., 0., "Self conformal factor of BH",
"Confo (theta=pi/2, phi=0)" ) ;
des_profile( confo_tot, 0., 10.,
M_PI/2., 0., "Total conformal factor of BH",
"Confo (theta=pi/2, phi=0)" ) ;
des_coupe_vect_z( shift_auto_rs, 0., -3., 0.5, 3,
"Residual shift vector of NS") ;
des_coupe_vect_z( shift_auto_bh, 0., -3., 0.5, 3,
"Analytic shift vector of NS") ;
des_coupe_vect_z( shift_auto, 0., -3., 0.5, 3,
"Self shift vector of NS") ;
des_coupe_vect_z( shift_tot, 0., -3., 0.5, 3,
"Total Shift vector seen by NS") ;
*/
} // End of main loop
//====================================//
// End of iteration //
//====================================//
}
}
|