File: hole_bhns_global.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (252 lines) | stat: -rw-r--r-- 7,358 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/*
 *  Methods of class Hole_bhns to compute global quantities
 *
 *    (see file hole_bhns.h for documentation).
 *
 */

/*
 *   Copyright (c) 2005,2007 Keisuke Taniguchi
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char hole_bhns_global_C[] = "$Header: /cvsroot/Lorene/C++/Source/Hole_bhns/hole_bhns_global.C,v 1.5 2014/10/13 08:53:00 j_novak Exp $" ;

/*
 * $Id: hole_bhns_global.C,v 1.5 2014/10/13 08:53:00 j_novak Exp $
 * $Log: hole_bhns_global.C,v $
 * Revision 1.5  2014/10/13 08:53:00  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.4  2014/10/06 15:13:10  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.3  2008/07/02 21:10:15  k_taniguchi
 * A bug removed.
 *
 * Revision 1.2  2008/05/15 19:07:26  k_taniguchi
 * Introduction of the quasilocal spin angular momentum.
 *
 * Revision 1.1  2007/06/22 01:25:15  k_taniguchi
 * *** empty log message ***
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Hole_bhns/hole_bhns_global.C,v 1.5 2014/10/13 08:53:00 j_novak Exp $
 *
 */

// C++ headers
//#include <>

// C headers
#include <cmath>

// Lorene headers
#include "hole_bhns.h"
#include "unites.h"
#include "utilitaires.h"

                    //-----------------------------------------//
                    //          Irreducible mass of BH         //
                    //-----------------------------------------//

namespace Lorene {
double Hole_bhns::mass_irr_bhns() const {

    // Fundamental constants and units
    // -------------------------------
    using namespace Unites ;

    if (p_mass_irr_bhns == 0x0) {   // a new computation is required

        Scalar psi4(mp) ;
	psi4 = pow(confo_tot, 4.) ;
	psi4.std_spectral_base() ;
	psi4.annule_domain(0) ;
	psi4.raccord(1) ;

	double radius_ah = mp.val_r(1,-1.,M_PI/2.,0.) ;

	Map_af& mp_aff= dynamic_cast<Map_af&>(mp) ;

	double a_ah = mp_aff.integrale_surface(psi4, radius_ah) ;
	double mirr = sqrt(a_ah/16./M_PI) / ggrav ;

	p_mass_irr_bhns = new double( mirr ) ;

    }

    return *p_mass_irr_bhns ;

}

          //----------------------------------------------------------//
          //          Quasilocal spin angular momentum of BH          //
          //----------------------------------------------------------//

double Hole_bhns::spin_am_bhns(const Tbl& xi_i, const double& phi_i,
			       const double& theta_i, const int& nrk_phi,
			       const int& nrk_theta) const {

    // Fundamental constants and units
    // -------------------------------
    using namespace Unites ;

    if (p_spin_am_bhns == 0x0) {   // a new computation is required

        double mass = ggrav * mass_bh ;

        Scalar rr(mp) ;
	rr = mp.r ;
	rr.std_spectral_base() ;

	Scalar st(mp) ;
	st = mp.sint ;
	st.std_spectral_base() ;
	Scalar ct(mp) ;
	ct = mp.cost ;
	ct.std_spectral_base() ;
	Scalar sp(mp) ;
	sp = mp.sinp ;
	sp.std_spectral_base() ;
	Scalar cp(mp) ;
	cp = mp.cosp ;
	cp.std_spectral_base() ;

	Vector ll(mp, CON, mp.get_bvect_cart()) ;
	ll.set_etat_qcq() ;
	ll.set(1) = st % cp ;
	ll.set(2) = st % sp ;
	ll.set(3) = ct ;
	ll.std_spectral_base() ;

	double radius_ah = mp.val_r(1,-1.,M_PI/2.,0.) ;

	if (kerrschild) {

	  cout << "Not yet prepared!!!" << endl ;
	  abort() ;

	}
	else {  // Isotropic coordinates

	  // Sets C/M^2 for each case of the lapse boundary condition
	  // --------------------------------------------------------
	  double cc ;

	  if (bc_lapconf_nd) {  // Neumann boundary condition
	    if (bc_lapconf_fs) {  // First condition
	      // d(\alpha \psi)/dr = 0
	      // ---------------------
	      cc = 2. * (sqrt(13.) - 1.) / 3. ;
	    }
	    else {  // Second condition
	      // d(\alpha \psi)/dr = (\alpha \psi)/(2 rah)
	      // -----------------------------------------
	      cc = 4. / 3. ;
	    }
	  }
	  else {  // Dirichlet boundary condition
	    if (bc_lapconf_fs) {  // First condition
	      // (\alpha \psi) = 1/2
	      // -------------------
	      cout << "!!!!! WARNING: Not yet prepared !!!!!" << endl ;
	      abort() ;
	    }
	    else {  // Second condition
	      // (\alpha \psi) = 1/sqrt(2.) \psi_KS
	      // ----------------------------------
	      cout << "!!!!! WARNING: Not yet prepared !!!!!" << endl ;
	      abort() ;
	      //	      cc = 2. * sqrt(2.) ;
	    }
	  }

	  Scalar r_are(mp) ;
	  r_are = r_coord(bc_lapconf_nd, bc_lapconf_fs) ;
	  r_are.std_spectral_base() ;

	  // Killing vector of the spherical components
	  Vector killing_spher(mp, COV, mp.get_bvect_spher()) ;
	  killing_spher.set_etat_qcq() ;
	  killing_spher = killing_vect(xi_i, phi_i, theta_i,
				       nrk_phi, nrk_theta) ;
	  killing_spher.std_spectral_base() ;

	  killing_spher.set(2) = confo_tot * confo_tot * radius_ah
	    * killing_spher(2) ;
	  killing_spher.set(3) = confo_tot * confo_tot * radius_ah
	    * killing_spher(3) ;
	  // killing_spher(3) is already divided by sin(theta)
	  killing_spher.std_spectral_base() ;

	  // Killing vector of the Cartesian components
	  Vector killing(mp, COV, mp.get_bvect_cart()) ;
	  killing.set_etat_qcq() ;
	  killing.set(1) = (killing_spher(2) * ct * cp - killing_spher(3) * sp)
	    / radius_ah ;
	  killing.set(2) = (killing_spher(2) * ct * sp + killing_spher(3) * cp)
	    / radius_ah ;
	  killing.set(3) = - killing_spher(2) * st / radius_ah ;
	  killing.std_spectral_base() ;

	  // Surface integral <- dzpuis should be 0
	  // --------------------------------------
	  // Source terms in the surface integral
	  Scalar source_1(mp) ;
	  source_1 = (ll(1) * (taij_tot_rs(1,1) * killing(1)
			       + taij_tot_rs(1,2) * killing(2)
			       + taij_tot_rs(1,3) * killing(3))
		      + ll(2) * (taij_tot_rs(2,1) * killing(1)
				 + taij_tot_rs(2,2) * killing(2)
				 + taij_tot_rs(2,3) * killing(3))
		      + ll(3) * (taij_tot_rs(3,1) * killing(1)
				 + taij_tot_rs(3,2) * killing(2)
				 + taij_tot_rs(3,3) * killing(3)))
	    / pow(confo_tot, 4.) ;
	  source_1.std_spectral_base() ;
	  source_1.dec_dzpuis(2) ;  // dzpuis : 2 -> 0

	  Scalar source_2(mp) ;
	  source_2 = -2. * pow(confo_tot, 3.) * mass * mass * cc
	    * sqrt(1. - 2.*mass/r_are/rr + cc*cc*pow(mass/r_are/rr,4.))
	    * (ll(1)*killing(1) + ll(2)*killing(2) + ll(3)*killing(3))
	    / lapconf_tot / pow(r_are*rr, 3.) ;
	  source_2.std_spectral_base() ;

	  Scalar source_surf(mp) ;
	  source_surf = source_1 + source_2 ;
	  source_surf.std_spectral_base() ;
	  source_surf.annule_domain(0) ;
	  source_surf.raccord(1) ;

	  Map_af& mp_aff= dynamic_cast<Map_af&>(mp) ;

	  double spin = mp_aff.integrale_surface(source_surf, radius_ah) ;
	  double spin_angmom = 0.5 * spin / qpig ;

	  p_spin_am_bhns = new double( spin_angmom ) ;

	}

    }

    return *p_spin_am_bhns ;

}
}