1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* Methods of class Hole_bhns to compute global quantities
*
* (see file hole_bhns.h for documentation).
*
*/
/*
* Copyright (c) 2005,2007 Keisuke Taniguchi
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char hole_bhns_global_C[] = "$Header: /cvsroot/Lorene/C++/Source/Hole_bhns/hole_bhns_global.C,v 1.5 2014/10/13 08:53:00 j_novak Exp $" ;
/*
* $Id: hole_bhns_global.C,v 1.5 2014/10/13 08:53:00 j_novak Exp $
* $Log: hole_bhns_global.C,v $
* Revision 1.5 2014/10/13 08:53:00 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.4 2014/10/06 15:13:10 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.3 2008/07/02 21:10:15 k_taniguchi
* A bug removed.
*
* Revision 1.2 2008/05/15 19:07:26 k_taniguchi
* Introduction of the quasilocal spin angular momentum.
*
* Revision 1.1 2007/06/22 01:25:15 k_taniguchi
* *** empty log message ***
*
*
* $Header: /cvsroot/Lorene/C++/Source/Hole_bhns/hole_bhns_global.C,v 1.5 2014/10/13 08:53:00 j_novak Exp $
*
*/
// C++ headers
//#include <>
// C headers
#include <cmath>
// Lorene headers
#include "hole_bhns.h"
#include "unites.h"
#include "utilitaires.h"
//-----------------------------------------//
// Irreducible mass of BH //
//-----------------------------------------//
namespace Lorene {
double Hole_bhns::mass_irr_bhns() const {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
if (p_mass_irr_bhns == 0x0) { // a new computation is required
Scalar psi4(mp) ;
psi4 = pow(confo_tot, 4.) ;
psi4.std_spectral_base() ;
psi4.annule_domain(0) ;
psi4.raccord(1) ;
double radius_ah = mp.val_r(1,-1.,M_PI/2.,0.) ;
Map_af& mp_aff= dynamic_cast<Map_af&>(mp) ;
double a_ah = mp_aff.integrale_surface(psi4, radius_ah) ;
double mirr = sqrt(a_ah/16./M_PI) / ggrav ;
p_mass_irr_bhns = new double( mirr ) ;
}
return *p_mass_irr_bhns ;
}
//----------------------------------------------------------//
// Quasilocal spin angular momentum of BH //
//----------------------------------------------------------//
double Hole_bhns::spin_am_bhns(const Tbl& xi_i, const double& phi_i,
const double& theta_i, const int& nrk_phi,
const int& nrk_theta) const {
// Fundamental constants and units
// -------------------------------
using namespace Unites ;
if (p_spin_am_bhns == 0x0) { // a new computation is required
double mass = ggrav * mass_bh ;
Scalar rr(mp) ;
rr = mp.r ;
rr.std_spectral_base() ;
Scalar st(mp) ;
st = mp.sint ;
st.std_spectral_base() ;
Scalar ct(mp) ;
ct = mp.cost ;
ct.std_spectral_base() ;
Scalar sp(mp) ;
sp = mp.sinp ;
sp.std_spectral_base() ;
Scalar cp(mp) ;
cp = mp.cosp ;
cp.std_spectral_base() ;
Vector ll(mp, CON, mp.get_bvect_cart()) ;
ll.set_etat_qcq() ;
ll.set(1) = st % cp ;
ll.set(2) = st % sp ;
ll.set(3) = ct ;
ll.std_spectral_base() ;
double radius_ah = mp.val_r(1,-1.,M_PI/2.,0.) ;
if (kerrschild) {
cout << "Not yet prepared!!!" << endl ;
abort() ;
}
else { // Isotropic coordinates
// Sets C/M^2 for each case of the lapse boundary condition
// --------------------------------------------------------
double cc ;
if (bc_lapconf_nd) { // Neumann boundary condition
if (bc_lapconf_fs) { // First condition
// d(\alpha \psi)/dr = 0
// ---------------------
cc = 2. * (sqrt(13.) - 1.) / 3. ;
}
else { // Second condition
// d(\alpha \psi)/dr = (\alpha \psi)/(2 rah)
// -----------------------------------------
cc = 4. / 3. ;
}
}
else { // Dirichlet boundary condition
if (bc_lapconf_fs) { // First condition
// (\alpha \psi) = 1/2
// -------------------
cout << "!!!!! WARNING: Not yet prepared !!!!!" << endl ;
abort() ;
}
else { // Second condition
// (\alpha \psi) = 1/sqrt(2.) \psi_KS
// ----------------------------------
cout << "!!!!! WARNING: Not yet prepared !!!!!" << endl ;
abort() ;
// cc = 2. * sqrt(2.) ;
}
}
Scalar r_are(mp) ;
r_are = r_coord(bc_lapconf_nd, bc_lapconf_fs) ;
r_are.std_spectral_base() ;
// Killing vector of the spherical components
Vector killing_spher(mp, COV, mp.get_bvect_spher()) ;
killing_spher.set_etat_qcq() ;
killing_spher = killing_vect(xi_i, phi_i, theta_i,
nrk_phi, nrk_theta) ;
killing_spher.std_spectral_base() ;
killing_spher.set(2) = confo_tot * confo_tot * radius_ah
* killing_spher(2) ;
killing_spher.set(3) = confo_tot * confo_tot * radius_ah
* killing_spher(3) ;
// killing_spher(3) is already divided by sin(theta)
killing_spher.std_spectral_base() ;
// Killing vector of the Cartesian components
Vector killing(mp, COV, mp.get_bvect_cart()) ;
killing.set_etat_qcq() ;
killing.set(1) = (killing_spher(2) * ct * cp - killing_spher(3) * sp)
/ radius_ah ;
killing.set(2) = (killing_spher(2) * ct * sp + killing_spher(3) * cp)
/ radius_ah ;
killing.set(3) = - killing_spher(2) * st / radius_ah ;
killing.std_spectral_base() ;
// Surface integral <- dzpuis should be 0
// --------------------------------------
// Source terms in the surface integral
Scalar source_1(mp) ;
source_1 = (ll(1) * (taij_tot_rs(1,1) * killing(1)
+ taij_tot_rs(1,2) * killing(2)
+ taij_tot_rs(1,3) * killing(3))
+ ll(2) * (taij_tot_rs(2,1) * killing(1)
+ taij_tot_rs(2,2) * killing(2)
+ taij_tot_rs(2,3) * killing(3))
+ ll(3) * (taij_tot_rs(3,1) * killing(1)
+ taij_tot_rs(3,2) * killing(2)
+ taij_tot_rs(3,3) * killing(3)))
/ pow(confo_tot, 4.) ;
source_1.std_spectral_base() ;
source_1.dec_dzpuis(2) ; // dzpuis : 2 -> 0
Scalar source_2(mp) ;
source_2 = -2. * pow(confo_tot, 3.) * mass * mass * cc
* sqrt(1. - 2.*mass/r_are/rr + cc*cc*pow(mass/r_are/rr,4.))
* (ll(1)*killing(1) + ll(2)*killing(2) + ll(3)*killing(3))
/ lapconf_tot / pow(r_are*rr, 3.) ;
source_2.std_spectral_base() ;
Scalar source_surf(mp) ;
source_surf = source_1 + source_2 ;
source_surf.std_spectral_base() ;
source_surf.annule_domain(0) ;
source_surf.raccord(1) ;
Map_af& mp_aff= dynamic_cast<Map_af&>(mp) ;
double spin = mp_aff.integrale_surface(source_surf, radius_ah) ;
double spin_angmom = 0.5 * spin / qpig ;
p_spin_am_bhns = new double( spin_angmom ) ;
}
}
return *p_spin_am_bhns ;
}
}
|