1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/*
* Copyright (c) 1999-2001 Eric Gourgoulhon
* Copyright (c) 1999-2001 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char map_af_elliptic_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $" ;
/*
* $Id: map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $
* $Log: map_af_elliptic.C,v $
* Revision 1.13 2014/10/13 08:53:02 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.12 2014/10/06 15:13:12 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.11 2007/05/06 10:48:11 p_grandclement
* Modification of a few operators for the vorton project
*
* Revision 1.10 2007/01/16 15:08:07 n_vasset
* New constructor, usn Scalar on mono-domain angular grid for boundary,
* for function sol_elliptic_boundary()
*
* Revision 1.9 2005/11/30 11:09:07 p_grandclement
* Changes for the Bin_ns_bh project
*
* Revision 1.8 2005/08/26 14:02:40 p_grandclement
* Modification of the elliptic solver that matches with an oscillatory exterior solution
* small correction in Poisson tau also...
*
* Revision 1.7 2005/06/09 07:57:31 f_limousin
* Implement a new function sol_elliptic_boundary() and
* Vector::poisson_boundary(...) which solve the vectorial poisson
* equation (method 6) with an inner boundary condition.
*
* Revision 1.6 2004/08/24 09:14:42 p_grandclement
* Addition of some new operators, like Poisson in 2d... It now requieres the
* GSL library to work.
*
* Also, the way a variable change is stored by a Param_elliptic is changed and
* no longer uses Change_var but rather 2 Scalars. The codes using that feature
* will requiere some modification. (It should concern only the ones about monopoles)
*
* Revision 1.5 2004/06/22 08:49:58 p_grandclement
* Addition of everything needed for using the logarithmic mapping
*
* Revision 1.4 2004/03/17 15:58:48 p_grandclement
* Slight modification of sol_elliptic_no_zec
*
* Revision 1.3 2004/02/11 09:47:46 p_grandclement
* Addition of a new elliptic solver, matching with the homogeneous solution
* at the outer shell and not solving in the external domain (more details
* coming soon ; check your local Lorene dealer...)
*
* Revision 1.2 2004/01/28 16:46:23 p_grandclement
* Addition of the sol_elliptic_fixe_der_zero stuff
*
* Revision 1.1 2003/12/11 14:48:48 p_grandclement
* Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
*
*
* $Header: /cvsroot/Lorene/C++/Source/Map/map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $
*
*/
// Header C :
#include <cstdlib>
#include <cmath>
// Headers Lorene :
#include "tbl.h"
#include "mtbl_cf.h"
#include "map.h"
#include "param_elliptic.h"
#include "proto.h"
//----------------------------------------------
// General elliptic solver
//----------------------------------------------
namespace Lorene {
void Map_af::sol_elliptic(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver (ope_var, *(rho.c_cf)) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//-----------------------------------------------
// General elliptic solver with boundary as Mtbl-cf
//-------------------------------------------------
void Map_af::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot, const Mtbl_cf& bound,
double fact_dir, double fact_neu ) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf), bound,
fact_dir, fact_neu) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//-----------------------------------------------
// General elliptic solver with boundary as Scalar
//-------------------------------------------------
void Map_af::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot, const Scalar& bound,
double fact_dir, double fact_neu ) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
// REMINDER : The scalar bound must be defined on a mono-domain angular grid corresponding with the full grid of the scalar source (following assert())
Scalar bbound = bound;
bbound.set_spectral_va().ylm() ;
const Map& mapp = bbound.get_mp();
const Mg3d& gri2d = *mapp.get_mg();
assert(&gri2d == source.get_mp().get_mg()->get_angu_1dom()) ; // Attention cet assert !!
Mtbl_cf bound2 (gri2d , bbound.get_spectral_base()) ;
bound2.annule_hard() ;
if (bbound.get_etat() != ETATZERO){
int nr = gri2d.get_nr(0) ;
int nt = gri2d.get_nt(0) ;
int np = gri2d.get_np(0) ;
for(int k=0; k<np+2; k++)
for (int j=0; j<=nt-1; j++)
for(int xi=0; xi<= nr-1; xi++)
{
bound2.set(0, k , j , xi) = (*bbound.get_spectral_va().c_cf)(0, k, j, xi) ;
}
}
Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf), bound2,
fact_dir, fact_neu) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//----------------------------------------------
// General elliptic solver with no ZEC
//----------------------------------------------
void Map_af::sol_elliptic_no_zec(Param_elliptic& ope_var, const Scalar& source,
Scalar& pot, double val) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver_no_zec (ope_var, *(rho.c_cf), val) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//----------------------------------------------
// General elliptic solver only in the ZEC
//----------------------------------------------
void Map_af::sol_elliptic_only_zec(Param_elliptic& ope_var,
const Scalar& source,
Scalar& pot, double val) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver_only_zec (ope_var, *(rho.c_cf), val) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//----------------------------------------------
// General elliptic solver with no ZEC
// and a mtaching with sin(r)/r
//----------------------------------------------
void Map_af::sol_elliptic_sin_zec(Param_elliptic& ope_var,
const Scalar& source, Scalar& pot, double* amplis, double* phases) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
Mtbl_cf resu = elliptic_solver_sin_zec (ope_var, *(rho.c_cf), amplis, phases) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
//----------------------------------------------
// General elliptic solver with no ZEC
//----------------------------------------------
void Map_af::sol_elliptic_fixe_der_zero (double valeur,
Param_elliptic& ope_var,
const Scalar& source,
Scalar& pot) const {
assert(source.get_etat() != ETATNONDEF) ;
assert(source.get_mp().get_mg() == mg) ;
assert(pot.get_mp().get_mg() == mg) ;
assert(source.check_dzpuis(2) || source.check_dzpuis(3) ||
source.check_dzpuis(4)) ;
// Spherical harmonic expansion of the source
// ------------------------------------------
const Valeur& sourva = source.get_spectral_va() ;
if (sourva.get_etat() == ETATZERO) {
pot.set_etat_zero() ;
return ;
}
// Spectral coefficients of the source
assert(sourva.get_etat() == ETATQCQ) ;
Valeur rho(sourva.get_mg()) ;
sourva.coef() ;
rho = *(sourva.c_cf) ; // copy of the coefficients of the source
rho.ylm() ; // spherical harmonic transforms
// On met les bonnes bases dans le changement de variable
// de ope_var :
ope_var.var_F.set_spectral_va().coef() ;
ope_var.var_F.set_spectral_va().ylm() ;
ope_var.var_G.set_spectral_va().coef() ;
ope_var.var_G.set_spectral_va().ylm() ;
// Call to the Mtbl_cf version
// ---------------------------
valeur *= alpha[0] ;
Mtbl_cf resu = elliptic_solver_fixe_der_zero (valeur, ope_var, *(rho.c_cf)) ;
// Final result returned as a Scalar
// ---------------------------------
pot.set_etat_zero() ; // to call Scalar::del_t().
pot.set_etat_qcq() ;
pot.set_spectral_va() = resu ;
pot.set_spectral_va().ylm_i() ; // On repasse en base standard.
pot.set_dzpuis(0) ;
}
}
|