File: map_af_elliptic.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (538 lines) | stat: -rw-r--r-- 16,659 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/*
 *   Copyright (c) 1999-2001 Eric Gourgoulhon
 *   Copyright (c) 1999-2001 Philippe Grandclement
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char map_af_elliptic_C[] = "$Header: /cvsroot/Lorene/C++/Source/Map/map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $" ;

/*
 * $Id: map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $
 * $Log: map_af_elliptic.C,v $
 * Revision 1.13  2014/10/13 08:53:02  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.12  2014/10/06 15:13:12  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.11  2007/05/06 10:48:11  p_grandclement
 * Modification of a few operators for the vorton project
 *
 * Revision 1.10  2007/01/16 15:08:07  n_vasset
 * New constructor, usn Scalar on mono-domain angular grid for boundary,
 * for function sol_elliptic_boundary()
 *
 * Revision 1.9  2005/11/30 11:09:07  p_grandclement
 * Changes for the Bin_ns_bh project
 *
 * Revision 1.8  2005/08/26 14:02:40  p_grandclement
 * Modification of the elliptic solver that matches with an oscillatory exterior solution
 * small correction in Poisson tau also...
 *
 * Revision 1.7  2005/06/09 07:57:31  f_limousin
 * Implement a new function sol_elliptic_boundary() and
 * Vector::poisson_boundary(...) which solve the vectorial poisson
 * equation (method 6) with an inner boundary condition.
 *
 * Revision 1.6  2004/08/24 09:14:42  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.5  2004/06/22 08:49:58  p_grandclement
 * Addition of everything needed for using the logarithmic mapping
 *
 * Revision 1.4  2004/03/17 15:58:48  p_grandclement
 * Slight modification of sol_elliptic_no_zec
 *
 * Revision 1.3  2004/02/11 09:47:46  p_grandclement
 * Addition of a new elliptic solver, matching with the homogeneous solution
 * at the outer shell and not solving in the external domain (more details
 * coming soon ; check your local Lorene dealer...)
 *
 * Revision 1.2  2004/01/28 16:46:23  p_grandclement
 * Addition of the sol_elliptic_fixe_der_zero stuff
 *
 * Revision 1.1  2003/12/11 14:48:48  p_grandclement
 * Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
 *
 * 
 * $Header: /cvsroot/Lorene/C++/Source/Map/map_af_elliptic.C,v 1.13 2014/10/13 08:53:02 j_novak Exp $
 *
 */

// Header C : 
#include <cstdlib>
#include <cmath>

// Headers Lorene :
#include "tbl.h"
#include "mtbl_cf.h"
#include "map.h"
#include "param_elliptic.h"
#include "proto.h"         

            //----------------------------------------------
	   //		General elliptic solver
	  //----------------------------------------------

namespace Lorene {
void Map_af::sol_elliptic(Param_elliptic& ope_var, const Scalar& source, 
			  Scalar& pot) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
  
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver (ope_var, *(rho.c_cf)) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}


 
            //-----------------------------------------------
	   //		General elliptic solver with boundary as Mtbl-cf
	  //-------------------------------------------------


void Map_af::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source, 
				   Scalar& pot,  const Mtbl_cf& bound, 
				   double fact_dir, double fact_neu ) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
  
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf),  bound, 
					   fact_dir, fact_neu) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}





            //-----------------------------------------------
	   //		General elliptic solver with boundary as Scalar
	  //-------------------------------------------------


void Map_af::sol_elliptic_boundary(Param_elliptic& ope_var, const Scalar& source, 
				   Scalar& pot,  const Scalar& bound, 
				   double fact_dir, double fact_neu ) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
  
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
 
// REMINDER : The scalar bound must be defined on a mono-domain angular grid corresponding with the full grid of the scalar source (following assert()) 
 
  Scalar bbound = bound;
  bbound.set_spectral_va().ylm() ;
  const Map& mapp = bbound.get_mp();
 
  const Mg3d& gri2d = *mapp.get_mg();

  assert(&gri2d == source.get_mp().get_mg()->get_angu_1dom()) ;  // Attention  cet assert !! 
  
  Mtbl_cf bound2 (gri2d , bbound.get_spectral_base()) ;
  bound2.annule_hard() ;  

  if (bbound.get_etat() != ETATZERO){ 
 
      int nr = gri2d.get_nr(0) ;
      int nt = gri2d.get_nt(0) ; 
      int np = gri2d.get_np(0) ; 
       
	  for(int k=0; k<np+2; k++)
	      for (int j=0; j<=nt-1; j++)
		  for(int xi=0; xi<= nr-1; xi++)
		  {

  bound2.set(0, k , j , xi) = (*bbound.get_spectral_va().c_cf)(0, k, j, xi) ;   
  }
  }
  Mtbl_cf resu = elliptic_solver_boundary (ope_var, *(rho.c_cf),  bound2, 
					   fact_dir, fact_neu) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}





            //----------------------------------------------
	   //	   General elliptic solver with no ZEC
	  //----------------------------------------------

void Map_af::sol_elliptic_no_zec(Param_elliptic& ope_var, const Scalar& source, 
			  Scalar& pot, double val) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver_no_zec (ope_var, *(rho.c_cf), val) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}

          //----------------------------------------------
	   //	   General elliptic solver only in the ZEC
	  //----------------------------------------------

void Map_af::sol_elliptic_only_zec(Param_elliptic& ope_var, 
				   const Scalar& source, 
				   Scalar& pot, double val) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver_only_zec (ope_var, *(rho.c_cf), val) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}

            //----------------------------------------------
	   //	   General elliptic solver with no ZEC
           //  and a mtaching with sin(r)/r
	  //----------------------------------------------

void Map_af::sol_elliptic_sin_zec(Param_elliptic& ope_var, 
				  const Scalar& source, Scalar& pot, double* amplis, double* phases) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  Mtbl_cf resu = elliptic_solver_sin_zec (ope_var, *(rho.c_cf), amplis, phases) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}


            //----------------------------------------------
	   //	   General elliptic solver with no ZEC
	  //----------------------------------------------

void Map_af::sol_elliptic_fixe_der_zero (double valeur, 
					 Param_elliptic& ope_var, 
					 const Scalar& source, 
					 Scalar& pot) const {
    
  assert(source.get_etat() != ETATNONDEF) ; 
  assert(source.get_mp().get_mg() == mg) ; 
  assert(pot.get_mp().get_mg() == mg) ; 
  
  assert(source.check_dzpuis(2) || source.check_dzpuis(3) || 
	 source.check_dzpuis(4)) ; 
  // Spherical harmonic expansion of the source
  // ------------------------------------------
  
  const Valeur& sourva = source.get_spectral_va() ; 
  
  if (sourva.get_etat() == ETATZERO) {
    pot.set_etat_zero() ;
    return ;  
    }
  
  // Spectral coefficients of the source
  assert(sourva.get_etat() == ETATQCQ) ; 
  
  Valeur rho(sourva.get_mg()) ; 
  sourva.coef() ; 
  rho = *(sourva.c_cf) ;	// copy of the coefficients of the source
  
  rho.ylm() ;			// spherical harmonic transforms 
    
  // On met les bonnes bases dans le changement de variable 
  // de ope_var :
  ope_var.var_F.set_spectral_va().coef() ;
  ope_var.var_F.set_spectral_va().ylm() ;
  ope_var.var_G.set_spectral_va().coef() ;
  ope_var.var_G.set_spectral_va().ylm() ;

  // Call to the Mtbl_cf version
  // ---------------------------
  valeur *= alpha[0] ;
  Mtbl_cf resu = elliptic_solver_fixe_der_zero (valeur, ope_var, *(rho.c_cf)) ;
  
  // Final result returned as a Scalar
  // ---------------------------------
  
  pot.set_etat_zero() ;  // to call Scalar::del_t().
  
  pot.set_etat_qcq() ; 
  
  pot.set_spectral_va() = resu ;
  pot.set_spectral_va().ylm_i() ; // On repasse en base standard.	    
  
  pot.set_dzpuis(0) ; 
}

}