1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
// Header Lorene:
#include "nbr_spx.h"
#include "utilitaires.h"
#include "graphique.h"
#include "math.h"
#include "metric.h"
#include "param.h"
#include "param_elliptic.h"
#include "tensor.h"
#include "diff.h"
#include "proto.h"
namespace Lorene {
// Resolution of tensorial equation (N^2/Psi^4)Delta(hij) - LbLbhij = Sij, using degenerate elliptic solver.
// Here assumption is made that no boundary condition has to be enforced, mainly Beta^i*s_i = N/psi^2
Sym_tensor boundfree_tensBC ( Sym_tensor source, Vector Beta, Scalar Psi, Scalar Nn, Sym_tensor hij_guess, double precision, int loopmax) {
cout << "================================================================" << endl;
cout << "STARTING THE SUBITERATION FOR THE CONFORMAL METRIC" << endl;
cout << " iteration parameters are the following: " << endl;
cout << " convergence precision required:" << precision << endl;
cout << " max number of global steps :" << loopmax << endl;
cout << "================================================================" << endl;
// Construction of a multi-grid (Mg3d)
// -----------------------------------
const int nz = (*source.get_mp().get_mg()).get_nzone(); // Number of domains
int nr = (*source.get_mp().get_mg()).get_nr(1); // Number of collocation points in r in each domain
const Coord& rr = source.get_mp().r;
Scalar rrr (source.get_mp()) ;
rrr = rr ;
rrr.std_spectral_base();
const Metric_flat& mets = (source.get_mp()).flat_met_spher() ;
//// Initialisation of iteration variables.
Sym_tensor hij = hij_guess;
Sym_tensor hij_new = hij;
Scalar n2sp4 = (Nn/(Psi*Psi))*(Nn/(Psi*Psi)) ; // Scale factor in front of Poisson Equation.
n2sp4.std_spectral_base();
// Resolution variables
Scalar khi = hij(1,1);
if (khi.get_etat() == ETATZERO) {
khi.annule_hard() ;
khi.set_dzpuis(4) ;
khi.std_spectral_base() ;
}
khi.set_spectral_va().ylm();
khi.mult_r();
khi.mult_r_dzpuis(1);
Scalar mmu = hij.mu();
if (mmu.get_etat() == ETATZERO) {
mmu.annule_hard() ;
mmu.std_spectral_base() ;
}
mmu.set_spectral_va().ylm();
Scalar etta = hij.eta();
if (etta.get_etat() == ETATZERO) {
etta.annule_hard() ;
etta.std_spectral_base() ;
}
etta.set_spectral_va().ylm();
Scalar Aa = hij.compute_A();
if (Aa.get_etat() == ETATZERO) {
Aa.annule_hard() ;
Aa.std_spectral_base() ;
}
Aa.set_spectral_va().ylm();
Scalar Bt = hij.compute_tilde_B();
if (Bt.get_etat() == ETATZERO) {
Bt.annule_hard() ;
Bt.std_spectral_base() ;
}
Bt.set_spectral_va().ylm();
Scalar hh = hij.trace(mets);
if (hh.get_etat() == ETATZERO) {
hh.annule_hard() ;
hh.std_spectral_base() ;
}
//Fitting scalar
Scalar fit1(source.get_mp()); fit1.set_etat_qcq();
// For storing the result of inversion
Scalar Aanew (source.get_mp()); Aanew.annule_hard(); Aanew.std_spectral_base();
Scalar Btnew (source.get_mp()); Btnew.annule_hard(); Btnew.std_spectral_base();
// Construction of sources for the next iteration
Sym_tensor LbLbhij = (hij.derive_lie(Beta)).derive_lie(Beta);
hij.annule_domain(0);
LbLbhij.annule_domain(0);
LbLbhij.inc_dzpuis(1);
Sym_tensor source_hij = source/n2sp4;
Scalar sourcetrace = source_hij.trace(mets);
Scalar Bttrace = source_hij.compute_tilde_B();
Sym_tensor source_hij2 = LbLbhij/n2sp4;
Scalar Btsource2 = source_hij2.compute_tilde_B();
Scalar source_Bt2 = Bttrace + Btsource2;
source_hij = source_hij + source_hij2;
Scalar r2LbLbrr = LbLbhij(1,1);
r2LbLbrr.mult_r();
r2LbLbrr.mult_r();
Scalar LbLbmu = LbLbhij.mu();
Scalar source_khi2 = source_hij(1,1);
source_khi2.mult_r();
source_khi2.mult_r();
Scalar source_mu2 = source_hij.mu();
Scalar source_eta2 = source_hij.eta();
Scalar source_A2 = source_hij.compute_A();
source_khi2.annule_domain(0);
source_mu2.annule_domain(0);
source_A2.annule_domain(0);
source_Bt2.annule_domain(0);
source_eta2.annule_domain(0);
// source_A2.set_spectral_va().set_base( Aa.set_spectral_va().get_base());
// source_Bt2.set_spectral_va().set_base( Bt.set_spectral_va().get_base());
//////////////// // Approximation of (Beta/(N^/psi^4))^2, for input in degenerate operator parameters.
Scalar Betacarre = (Beta(1)*Beta(1))/n2sp4 ;
double fitd1 = (Betacarre.val_grid_point(1,0,0,nr-1) - Betacarre.val_grid_point(1,0,0,0))/(rrr.val_grid_point(1,0,0,nr-1) - rrr.val_grid_point(1,0,0,0)) ;
// double error = 0.; // Voluntary error on fit.
// fitd1 += error;
int nrint = (nr-1)/2 ;
double ampl_r = (rrr.val_grid_point(1,0,0, nr -1) - rrr.val_grid_point(1,0,0 ,0))/2.;
Scalar approx(source.get_mp());
approx.annule_hard();
approx.std_spectral_base();
fit1 = fitd1*(rrr-1.) +1.;
// First order approximation
approx.set_domain(1)= fit1.set_domain(1); // MAKE PARTICULAR FOR ETATUN; DECLARE FIT1?2?3 FIRST TO BE CLEAN.
//Second order approximation
Scalar firststep = Betacarre - approx;
double ampli = firststep.val_grid_point(1,0,0,nrint);
double fit2d1 = - ampli/(ampl_r* ampl_r);
approx.set_domain(1) += (fit2d1*(rrr - 1.)*(rrr - rrr.val_grid_point(1,0,0,nr-1))).set_domain(1);
double fit0d2 = approx.val_grid_point(1,0,0,nr -1);
double fit1d2 = (Betacarre.val_grid_point(2,0,0,nr-1) - fit0d2)/(rrr.val_grid_point(2,0,0,nr-1)- rrr.val_grid_point(2,0,0,0));
double fit0d3 = Betacarre.val_grid_point(3,0,0,0);
double fit1d3 = ( - fit0d3)/(rrr.val_grid_point(3,0,0,nr-1)- rrr.val_grid_point(3,0,0,0));
approx.set_domain(2) = (fit0d2 + fit1d2*(rrr - rrr.val_grid_point(2,0,0,0))).set_domain(2);
approx.set_domain(3) = (fit0d3 + fit1d3*(rrr - rrr.val_grid_point(3,0,0,0))).set_domain(3);
for(int ii=1; ii<=3; ii++){
source_khi2.set_domain(ii) += (-approx*(khi.dsdr().dsdr())).set_domain(ii);
source_mu2.set_domain(ii) += (-approx*(mmu.dsdr().dsdr())).set_domain(ii);
source_eta2.set_domain(ii) += (-approx*(etta.dsdr().dsdr())).set_domain(ii);
source_A2.set_domain(ii) += (-approx*(Aa.dsdr().dsdr())).set_domain(ii);
source_Bt2.set_domain(ii) += (-approx*(Bt.dsdr().dsdr())).set_domain(ii);
}
// Convergence markers
Scalar Aa_old(source.get_mp());
Scalar Bt_old(source.get_mp());
// Parameters for the iteration
cout <<"==================================================================================" << endl;
cout << "amplitude for the tensor equation source (used as scaling for convergence marker)" << endl;
cout <<"==================================================================================" << endl;
double scale = max(maxabs(source));
double diff_ent = 0.15 ; // Initialisation of the difference marker between two iterations on some value
/////////////////////////////////////////////////////////////////////////////////////
///////////////// ITERATION ///////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////
for (int mer = 0; (diff_ent>precision) && (mer< loopmax) ; mer++) {
double relax = 0.15; // Global relaxation parameter
// Rsolution for variables A and tilde(B)
tensorelliptic (source_A2, Aanew , fitd1, fit2d1, fit0d2, fit1d2, fit0d3, fit1d3);
tensorellipticBt (source_Bt2, Btnew, fitd1, fit2d1, fit0d2, fit1d2, fit0d3, fit1d3);
Aa = Aanew ;
Bt = Btnew ; // No relaxation on these variables; it will be done globally on the tensor.
/////////////////////////////////////////////////////////////////////////////////
//// Resolution tests
Scalar essaiA = Aanew.laplacian() - approx*(Aanew.dsdr().dsdr());
essaiA.annule_domain(0);
Scalar bobofA = essaiA -source_A2 ;
bobofA.set_spectral_va().ylm() ;
// maxabs (bobofA);
// bobofA.spectral_display();
bobofA.set_spectral_va().ylm_i();
////////////////////////////////////////////////////////////////////////////////////
//-------------------------------------------
// Retrieving the tensor hij by Dirac inversion
//------------------------------------------
/////////////
// Magnetic part
Scalar mmuA = mmu;
Scalar mmuAsr = mmuA; mmuAsr.div_r();
Scalar xxA(source.get_mp()); xxA.annule_hard(); xxA.std_spectral_base();
const Scalar AA = Aa;
Param* par_bc = 0x0;
Sym_tensor_trans hijt(source.get_mp(), source.get_mp().get_bvect_spher(), mets);
hijt = hij;
hijt.sol_Dirac_A2 ( AA , mmuAsr, xxA, source_mu2, par_bc);
// Monitoring A and Hmu;
Scalar musrsr = mmuAsr; musrsr.div_r_dzpuis(2);
Aanew = xxA.dsdr() - musrsr;
Scalar xxsr = xxA; xxsr.div_r_dzpuis(2);
// Scalar Hmut = 3.*musrsr + mmuAsr.dsdr() + 2.*xxsr + xxsr.lapang();
////////////
//Electric part
Scalar hrrBC (source.get_mp()); hrrBC.annule_hard();
Scalar wwBC(source.get_mp()); wwBC.annule_hard();
Scalar tilde_etaBC(source.get_mp()); tilde_etaBC.annule_hard();
Scalar source_khi3 = source_khi2;
source_khi3.annule_domain(nz-1);
source_khi3 += 2*hh;
source_khi3.set_spectral_va().ylm();
hijt.sol_Dirac_BC3( Bt, hh, hrrBC , tilde_etaBC , wwBC , source_khi3, source_eta2, par_bc, par_bc) ;
// Tensor reconstruction
hij_new.set_auxiliary(hrrBC, tilde_etaBC, mmuAsr, wwBC, xxA, hh -hrrBC);
hij= relax*hij_new + (1 - relax)*hij ; // Global relaxation (opposite to relaxation on resolution variables).
// Calculation of updated trace.
hh = (1 + hij(1,1))*( hij(2,3)*hij(2,3) - hij(2,2)*hij(3,3) )
+ hij(1,2)*hij(1,2)*(1 + hij(3,3))
+ hij(1,3)*hij(1,3)*(1 + hij(2,2))
- hij(1,1)*(hij(2,2) + hij(3,3)) - 2*hij(1,2)*hij(1,3)*hij(2,3) ;
khi = hij(1,1);
khi.mult_r();
khi.mult_r_dzpuis(0);
mmu = hij.mu();
etta = hij.eta();
Aa = hij.compute_A();
Bt = hij.compute_tilde_B();
if (mer >=1){
Aa.set_spectral_va().ylm();
Bt.set_spectral_va().ylm();
Aa_old.set_spectral_va().ylm();
Bt_old.set_spectral_va().ylm();
diff_ent = max(maxabs (Bt - Bt_old))/scale; // Convergence marker
}
Aa_old = Aa;
Bt_old = Bt;
// Update of sources for the next loop
LbLbhij = (hij.derive_lie(Beta)).derive_lie(Beta);
LbLbhij.inc_dzpuis(1);
r2LbLbrr = LbLbhij(1,1);
r2LbLbrr.mult_r();
r2LbLbrr.mult_r();
LbLbmu = LbLbhij.mu();
source_hij = source/n2sp4;
Bttrace = source_hij.compute_tilde_B();
source_hij2 = LbLbhij/n2sp4;
Btsource2 = source_hij2.compute_tilde_B();
source_Bt2 = Bttrace + Btsource2;
source_hij = source_hij + source_hij2;
source_khi2 = source_hij(1,1);
source_khi2.mult_r();
source_khi2.mult_r();
source_mu2 = source_hij.mu();
source_eta2 = source_hij.eta();
source_A2= source_hij.compute_A();
source_A2.set_spectral_va().set_base( Aa.set_spectral_va().get_base());
source_Bt2.set_spectral_va().set_base( Bt.set_spectral_va().get_base());
for(int ii=1; ii<=3; ii++){
source_khi2.set_domain(ii) += (-approx*(khi.dsdr().dsdr())).set_domain(ii);
source_mu2.set_domain(ii) += (-approx*(mmu.dsdr().dsdr())).set_domain(ii);
source_eta2.set_domain(ii) += (-approx*(etta.dsdr().dsdr())).set_domain(ii);
source_A2.set_domain(ii) += (-approx*(Aa.dsdr().dsdr())).set_domain(ii);
source_Bt2.set_domain(ii) += (-approx*(Bt.dsdr().dsdr())).set_domain(ii);
}
source_khi2.annule_domain(0);
source_mu2.annule_domain(0);
source_eta2.annule_domain(0);
source_A2.annule_domain(0);
source_Bt2.annule_domain(0);
// cout << "real A resolution?" << endl;
// Sym_tensor mucorrect = LbLbhij + source;
// mucorrect = mucorrect/n2sp4;
// Scalar AAs = mucorrect.compute_A();
// AAs.annule_domain(nz-1);
// Aa.annule_domain(nz-1);
// Scalar Aa2 = Aa.laplacian();
// Scalar voirA = AAs - Aa2;
// voirA.set_spectral_va().ylm_i();
// // des_meridian(voirA, 1.00001*Rhor, Rout,"diffA", 1);
// voirA.set_spectral_va().ylm();
// maxabs (voirA);
// voirA.spectral_display("voirA", 1.e-9);
cout << "diff_ent" << diff_ent << endl;
cout << mer << endl;
}
return hij;
}
}
|