1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
/*
* Copyright (c) 2000-2001 Jerome Novak
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char get_operateur_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/get_operateur.C,v 1.9 2014/10/13 08:53:28 j_novak Exp $" ;
/*
* $Id: get_operateur.C,v 1.9 2014/10/13 08:53:28 j_novak Exp $
* $Log: get_operateur.C,v $
* Revision 1.9 2014/10/13 08:53:28 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.8 2014/10/06 15:16:08 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.7 2008/08/27 08:51:15 jl_cornou
* Added Jacobi(0,2) polynomials
*
* Revision 1.6 2005/01/27 10:19:43 j_novak
* Now using Diff operators to build the matrices.
*
* Revision 1.5 2003/06/18 08:45:27 j_novak
* In class Mg3d: added the member get_radial, returning only a radial grid
* For dAlembert solver: the way the coefficients of the operator are defined has been changed.
*
* Revision 1.4 2002/01/03 15:30:28 j_novak
* Some comments modified.
*
* Revision 1.3 2002/01/03 13:18:41 j_novak
* Optimization: the members set(i,j) and operator(i,j) of class Matrice are
* now defined inline. Matrice is a friend class of Tbl.
*
* Revision 1.2 2002/01/02 14:07:57 j_novak
* Dalembert equation is now solved in the shells. However, the number of
* points in theta and phi must be the same in each domain. The solver is not
* completely tested (beta version!).
*
* Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
* LORENE
*
* Revision 1.3 2001/10/29 10:55:28 novak
* Error fixed for r^2 d^2/dr^2 operator
*
* Revision 1.2 2000/12/18 13:33:46 novak
* *** empty log message ***
*
* Revision 1.1 2000/12/04 16:36:50 novak
* Initial revision
*
*
* $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/get_operateur.C,v 1.9 2014/10/13 08:53:28 j_novak Exp $
*
*/
// Header C :
#include <cmath>
// Headers Lorene :
#include "param.h"
#include "base_val.h"
#include "diff.h"
#include "proto.h"
/*************************************************************************
*
* Routine used by sol_dalembert, to compute the matrix of the operator
* to be solved. The coefficients (Ci) are stored in par.get_tbl_mod(1->9)
* The time-step is par.get_double(0). Other inputs are:
* l: spherical harmonic number
* alpha, beta: coefficients of the affine mapping (see map.h)
* Outputs are: type_dal : type of the operator (see type_parite.h)
* operateur: matrix of the operator
*
* The operator reads:
*
* Indentity - 0.5*dt^2 [ (C1 + C3r^2) d^2/dr^2 + (C6/r + C5r) d/dr
* (C9/r^2 + C7) Id ]
*
*************************************************************************/
//-----------------------------------
// Routine pour les cas non prevus --
//-----------------------------------
namespace Lorene {
void _get_operateur_dal_pas_prevu(const Param& , const int&, int& , Matrice& )
{
cout << "get_operateur_dal pas prevu..." << endl ;
abort() ;
exit(-1) ;
}
void _get_operateur_dal_r_cheb(const Param& par, const int& lz,
int& type_dal, Matrice& operateur)
{
int nr = operateur.get_dim(0) ;
assert (nr == operateur.get_dim(1)) ;
assert (par.get_n_double() > 0) ;
assert (par.get_n_tbl_mod() > 0) ;
assert ((par.get_tbl_mod()).get_dim(1) == 12 ) ;
assert ((par.get_tbl_mod()).get_ndim() ==2 ) ;
double dt = par.get_double(0) ;
dt *= 0.5*dt ;
// Copies the global coefficients to a local Tbl
Tbl coeff(10) ;
coeff.set_etat_qcq() ;
coeff.set(1) = (par.get_tbl_mod())(1,lz) ;
coeff.set(2) = (par.get_tbl_mod())(2,lz) ;
coeff.set(3) = (par.get_tbl_mod())(3,lz) ;
coeff.set(4) = (par.get_tbl_mod())(4,lz) ;
coeff.set(5) = (par.get_tbl_mod())(5,lz) ;
coeff.set(6) = (par.get_tbl_mod())(6,lz) ;
coeff.set(7) = (par.get_tbl_mod())(7,lz) ;
coeff.set(8) = (par.get_tbl_mod())(8,lz) ;
coeff.set(9) = (par.get_tbl_mod())(9,lz) ;
double R1 = (par.get_tbl_mod())(10,lz) ;
double R2 = (par.get_tbl_mod())(11,lz) ;
double a00 = 0. ; double a01 = 0. ; double a02 = 0. ;
double a10 = 0. ; double a11 = 0. ; double a12 = 0. ;
double a13 = 0. ; double a20 = 0. ; double a21 = 0. ;
double a22 = 0. ; double a23 = 0. ; double a24 = 0. ;
bool dege = (fabs(coeff(9)) < 1.e-10) ;
switch (dege) {
case true:
a00 = R1 - dt*(coeff(7)*R1 + coeff(8)) ;
a01 = R2 - dt*R2*coeff(7) ;
a02 = 0 ;
a10 = -dt*(R1*coeff(4) + R1*R1*coeff(5) + coeff(6))/R2 ;
a11 = -dt*(coeff(4) + 2*R1*coeff(5)) ;
a12 = -dt*R2*coeff(5) ;
a13 = 0 ;
a20 = -dt*R1/(R2*R2)*(coeff(1) + R1*coeff(2) + R1*R1*coeff(3)) ;
a21 = -dt/R2*(coeff(1) + 2*R1*coeff(2) + 3*R1*R1*coeff(3)) ;
a22 = -dt*(coeff(2) + 3*R1*coeff(3)) ;
a23 = -dt*R2*coeff(3) ;
a24 = 0 ;
type_dal = ((0.1*(fabs(a20)+fabs(a21)+fabs(a22)+fabs(a23))*nr*nr*nr
< 1.) ? O2DEGE_SMALL : O2DEGE_LARGE ) ;
break ;
case false:
a00 = R1*R1 - dt*(coeff(7)*R1*R1 + coeff(8)*R1 + coeff(9)) ;
a01 = 2*R1*R2 - dt*(2*R1*R2*coeff(7) + R2*coeff(8)) ;
a02 = R2*R2*(1 - dt*coeff(7)) ;
a10 = -dt*R1/R2*(R1*coeff(4) + R1*R1*coeff(5) + coeff(6)) ;
a11 = -dt*(2*R1*coeff(4) + 3*R1*R1*coeff(5) + coeff(6)) ;
a12 = -dt*(R2*coeff(4) + 3*R1*R2*coeff(5)) ;
a13 = -dt*R2*R2*coeff(5) ;
a20 = -dt*(R1*R1)/(R2*R2)*(coeff(1) + R1*coeff(2) + R1*R1*coeff(3)) ;
a21 = -dt*R1/R2*(2*coeff(1) + 3*R1*coeff(2) + 4*R1*R1*coeff(3)) ;
a22 = -dt*(coeff(1) + 3*R1*coeff(2) + 6*R1*R1*coeff(3)) ;
a23 = -dt*(R2*coeff(2) + 4*R1*R2*coeff(3)) ;
a24 = -dt*R2*R2*coeff(3) ;
type_dal = ((0.1*(fabs(a20)+fabs(a21)+fabs(a22)+fabs(a23)+fabs(a24))
*nr*nr*nr < 1.) ? O2NOND_SMALL : O2NOND_LARGE ) ;
break ;
}
if (fabs(a00)<1.e-15) a00 = 0 ;
if (fabs(a01)<1.e-15) a01 = 0 ;
if (fabs(a02)<1.e-15) a02 = 0 ;
if (fabs(a10)<1.e-15) a10 = 0 ;
if (fabs(a11)<1.e-15) a11 = 0 ;
if (fabs(a12)<1.e-15) a12 = 0 ;
if (fabs(a13)<1.e-15) a13 = 0 ;
if (fabs(a20)<1.e-15) a20 = 0 ;
if (fabs(a21)<1.e-15) a21 = 0 ;
if (fabs(a22)<1.e-15) a22 = 0 ;
if (fabs(a23)<1.e-15) a23 = 0 ;
if (fabs(a24)<1.e-15) a24 = 0 ;
Diff_id id(R_CHEB, nr) ;
if (fabs(a00)>1.e-15) {
operateur = a00*id ;
}
else{
operateur.set_etat_qcq() ;
for (int i=0; i<nr; i++)
for (int j=0; j<nr; j++)
operateur.set(i,j) = 0. ;
}
Diff_mx op01(R_CHEB, nr) ; const Matrice& m01 = op01.get_matrice() ;
Diff_mx2 op02(R_CHEB, nr) ; const Matrice& m02 = op02.get_matrice() ;
Diff_dsdx op10(R_CHEB, nr) ; const Matrice& m10 = op10.get_matrice() ;
Diff_xdsdx op11(R_CHEB, nr) ; const Matrice& m11 = op11.get_matrice() ;
Diff_x2dsdx op12(R_CHEB, nr) ; const Matrice& m12 = op12.get_matrice() ;
Diff_x3dsdx op13(R_CHEB, nr) ; const Matrice& m13 = op13.get_matrice() ;
Diff_dsdx2 op20(R_CHEB, nr) ; const Matrice& m20 = op20.get_matrice() ;
Diff_xdsdx2 op21(R_CHEB, nr) ; const Matrice& m21 = op21.get_matrice() ;
Diff_x2dsdx2 op22(R_CHEB, nr) ; const Matrice& m22 = op22.get_matrice() ;
Diff_x3dsdx2 op23(R_CHEB, nr) ; const Matrice& m23 = op23.get_matrice() ;
Diff_x4dsdx2 op24(R_CHEB, nr) ; const Matrice& m24 = op24.get_matrice() ;
for (int i=0; i<nr; i++) {
int jmin = (i>3 ? i-3 : 0) ;
int jmax = (i<nr-9 ? i+10 : nr) ;
for (int j=jmin ; j<jmax; j++)
operateur.set(i,j) += a01*m01(i,j) + a02*m02(i,j)
+ a10*m10(i,j) + a11*m11(i,j) + a12*m12(i,j)
+ a13*m13(i,j) + a20*m20(i,j) + a21*m21(i,j)
+ a22*m22(i,j) + a23*m23(i,j) + a24*m24(i,j) ;
}
}
void _get_operateur_dal_r_chebp(const Param& par, const int& lzone,
int& type_dal, Matrice& operateur)
{
assert(lzone == 0) ; // Nucleus!
int nr = operateur.get_dim(0) ;
assert (nr == operateur.get_dim(1)) ;
assert (par.get_n_double() > 0) ;
assert (par.get_n_tbl_mod() > 0) ;
assert ((par.get_tbl_mod()).get_dim(1) == 12 ) ;
assert ((par.get_tbl_mod()).get_ndim() ==2 ) ;
double dt = par.get_double(0) ;
dt *= 0.5*dt ;
// Copies the global coefficients to a local Tbl and adds the -l(l+1) term
Tbl coeff(7) ;
coeff.set_etat_qcq() ;
coeff.set(1) = (par.get_tbl_mod())(1,lzone) ;
if (fabs(coeff(1))<1.e-15) coeff.set(1) = 0 ;
coeff.set(2) = (par.get_tbl_mod())(3,lzone) ;
if (fabs(coeff(2))<1.e-15) coeff.set(2) = 0 ;
coeff.set(3) = (par.get_tbl_mod())(6,lzone) ;
if (fabs(coeff(3))<1.e-15) coeff.set(3) = 0 ;
coeff.set(4) = (par.get_tbl_mod())(5,lzone) ;
if (fabs(coeff(4))<1.e-15) coeff.set(4) = 0 ;
coeff.set(5) = (par.get_tbl_mod())(9,lzone) ;
if (fabs(coeff(5))<1.e-15) coeff.set(5) = 0 ;
coeff.set(6) = (par.get_tbl_mod())(7,lzone) ;
if (fabs(coeff(6))<1.e-15) coeff.set(6) = 0 ;
double alpha2 = (par.get_tbl_mod())(11,lzone)*(par.get_tbl_mod())(11,lzone) ;
//***********************************************************************
// Definition of the type of operator
// For each type and a fixed time-step, if the number of points (nr) is too
// large, the round-off error makes the matrix ill-conditioned. So one has
// to pass the last line of the matrix to the first place (see dal_inverse).
// The linear combinations to put the matrix into a banded form also depend
// on the type of operator.
//***********************************************************************
if (fabs(coeff(1)) + fabs(coeff(2)) + fabs(coeff(5)) < 1.e-30) {
// First order operator
if (dt < 0.1/(fabs(coeff(3)) + fabs(coeff(4))*nr))
type_dal = ORDRE1_SMALL ;
else type_dal = ORDRE1_LARGE ;
}
else {
// Second order degenerate (no 1/r^2 term)
if (fabs(coeff(5)) < 1.e-24) {
if (dt < 1./(fabs(coeff(1)) + fabs(coeff(2)) + fabs(coeff(3))*nr
+fabs(coeff(4)))/nr/nr) type_dal = O2DEGE_SMALL ;
else type_dal = O2DEGE_LARGE ;
}
else {
// Second order non-degenerate (most general case)
if (dt < 1./((fabs(coeff(1)) + fabs(coeff(2)) + fabs(coeff(3))*nr
+ fabs(coeff(4)) + fabs(coeff(5)))*nr*nr))
type_dal = O2NOND_SMALL ;
else type_dal = O2NOND_LARGE ;
}
}
coeff.set(1) *= dt/alpha2 ;
coeff.set(2) *= dt ;
coeff.set(3) *= dt/alpha2 ;
coeff.set(4) *= dt ;
coeff.set(5) *= dt/alpha2 ;
coeff.set(6) *= dt ;
Diff_id id(R_CHEBP, nr) ;
if (fabs(1-coeff(6))>1.e-15) {
operateur = (1-coeff(6))*id ;
}
else{
operateur.set_etat_qcq() ;
for (int i=0; i<nr; i++)
for (int j=0; j<nr; j++)
operateur.set(i,j) = 0. ;
}
Diff_sx2 op02(R_CHEBP, nr) ; const Matrice& m02 = op02.get_matrice() ;
Diff_xdsdx op11(R_CHEBP, nr) ; const Matrice& m11 = op11.get_matrice() ;
Diff_sxdsdx op12(R_CHEBP, nr) ; const Matrice& m12 = op12.get_matrice() ;
Diff_dsdx2 op20(R_CHEBP, nr) ; const Matrice& m20 = op20.get_matrice() ;
Diff_x2dsdx2 op22(R_CHEBP, nr) ; const Matrice& m22 = op22.get_matrice() ;
for (int i=0; i<nr; i++) {
int jmin = (i>3 ? i-3 : 0) ;
int jmax = (i<nr-9 ? i+10 : nr) ;
for (int j=jmin ; j<jmax; j++)
operateur.set(i,j) -= coeff(1)*m20(i,j) + coeff(2)*m22(i,j)
+ coeff(3)*m12(i,j) + coeff(4)*m11(i,j) + coeff(5)*m02(i,j) ;
}
}
void _get_operateur_dal_r_chebi(const Param& par, const int& lzone,
int& type_dal, Matrice& operateur)
{
assert(lzone == 0) ; // Nucleus!
int nr = operateur.get_dim(0) ;
assert (nr == operateur.get_dim(1)) ;
assert (par.get_n_double() > 0) ;
assert (par.get_n_tbl_mod() > 0) ;
assert ((par.get_tbl_mod()).get_dim(1) == 12 ) ;
assert ((par.get_tbl_mod()).get_ndim() == 2 ) ;
double dt = par.get_double(0) ;
dt *= 0.5*dt ;
// Copies the global coefficients to a local Tbl and adds the -l(l+1) term
Tbl coeff(7) ;
coeff.set_etat_qcq() ;
coeff.set(1) = (par.get_tbl_mod())(1,lzone) ;
if (fabs(coeff(1))<1.e-15) coeff.set(1) = 0 ;
coeff.set(2) = (par.get_tbl_mod())(3,lzone) ;
if (fabs(coeff(2))<1.e-15) coeff.set(2) = 0 ;
coeff.set(3) = (par.get_tbl_mod())(6,lzone) ;
if (fabs(coeff(3))<1.e-15) coeff.set(3) = 0 ;
coeff.set(4) = (par.get_tbl_mod())(5,lzone) ;
if (fabs(coeff(4))<1.e-15) coeff.set(4) = 0 ;
coeff.set(5) = (par.get_tbl_mod())(9,lzone) ;
if (fabs(coeff(5))<1.e-15) coeff.set(5) = 0 ;
coeff.set(6) = (par.get_tbl_mod())(7,lzone) ;
if (fabs(coeff(6))<1.e-15) coeff.set(6) = 0 ;
double alpha2 = (par.get_tbl_mod())(11,lzone)*(par.get_tbl_mod())(11,lzone) ;
//***********************************************************************
// Definition of the type of operator
// For each type and a fixed time-step, if the number of points (nr) is too
// large, the round-off error makes the matrix ill-conditioned. So one has
// to pass the last line of the matrix to the first place (see dal_inverse).
// The linear combinations to put the matrix into a banded form also depend
// on the type of operator.
//***********************************************************************
if (fabs(coeff(1)) + fabs(coeff(2)) + fabs(coeff(3)) +
fabs(coeff(5)) < 1.e-30) {
// First order operator
if (dt < 0.1/(fabs(coeff(4))*nr))
type_dal = ORDRE1_SMALL ;
else type_dal = ORDRE1_LARGE ;
}
else {
if (fabs(coeff(5)+coeff(3)) < 1.e-6) {
// Second order degenerate (no 1/r^2 term)
if (dt < 1./(fabs(coeff(1)) + fabs(coeff(2)) + fabs(coeff(3))*nr
+fabs(coeff(4)))/nr/nr) type_dal = O2DEGE_SMALL ;
else type_dal = O2DEGE_LARGE ;
}
else {
// Second order non-degenerate (most general case)
if (dt < 1./((fabs(coeff(1)) + fabs(coeff(2)) + fabs(coeff(3))*nr
+ fabs(coeff(4)) + fabs(coeff(5)))*nr*nr))
type_dal = O2NOND_SMALL ;
else type_dal = O2NOND_LARGE ;
}
}
coeff.set(1) *= dt/alpha2 ;
coeff.set(2) *= dt ;
coeff.set(3) *= dt/alpha2 ;
coeff.set(4) *= dt ;
coeff.set(5) *= dt/alpha2 ;
coeff.set(6) *= dt ;
Diff_id id(R_CHEBP, nr) ;
if (fabs(1-coeff(6))>1.e-15) {
operateur = (1-coeff(6))*id ;
}
else{
operateur.set_etat_qcq() ;
for (int i=0; i<nr; i++)
for (int j=0; j<nr; j++)
operateur.set(i,j) = 0. ;
}
Diff_sx2 op02(R_CHEBI, nr) ; const Matrice& m02 = op02.get_matrice() ;
Diff_xdsdx op11(R_CHEBI, nr) ; const Matrice& m11 = op11.get_matrice() ;
Diff_sxdsdx op12(R_CHEBI, nr) ; const Matrice& m12 = op12.get_matrice() ;
Diff_dsdx2 op20(R_CHEBI, nr) ; const Matrice& m20 = op20.get_matrice() ;
Diff_x2dsdx2 op22(R_CHEBI, nr) ; const Matrice& m22 = op22.get_matrice() ;
for (int i=0; i<nr; i++) {
int jmin = (i>3 ? i-3 : 0) ;
int jmax = (i<nr-9 ? i+10 : nr) ;
for (int j=jmin ; j<jmax; j++)
operateur.set(i,j) -= coeff(1)*m20(i,j) + coeff(2)*m22(i,j)
+ coeff(3)*m12(i,j) + coeff(4)*m11(i,j) + coeff(5)*m02(i,j) ;
}
}
void _get_operateur_dal_r_jaco02(const Param& par, const int& lz,
int& type_dal, Matrice& operateur)
{
int nr = operateur.get_dim(0) ;
assert (nr == operateur.get_dim(1)) ;
assert (par.get_n_double() > 0) ;
assert (par.get_n_tbl_mod() > 0) ;
assert ((par.get_tbl_mod()).get_dim(1) == 12 ) ;
assert ((par.get_tbl_mod()).get_ndim() ==2 ) ;
double dt = par.get_double(0) ;
dt *= 0.5*dt ;
// Copies the global coefficients to a local Tbl
Tbl coeff(10) ;
coeff.set_etat_qcq() ;
coeff.set(1) = (par.get_tbl_mod())(1,lz) ;
coeff.set(2) = (par.get_tbl_mod())(2,lz) ;
coeff.set(3) = (par.get_tbl_mod())(3,lz) ;
coeff.set(4) = (par.get_tbl_mod())(4,lz) ;
coeff.set(5) = (par.get_tbl_mod())(5,lz) ;
coeff.set(6) = (par.get_tbl_mod())(6,lz) ;
coeff.set(7) = (par.get_tbl_mod())(7,lz) ;
coeff.set(8) = (par.get_tbl_mod())(8,lz) ;
coeff.set(9) = (par.get_tbl_mod())(9,lz) ;
double R1 = (par.get_tbl_mod())(10,lz) ;
double R2 = (par.get_tbl_mod())(11,lz) ;
double a00 = 0. ; double a01 = 0. ; double a02 = 0. ;
double a10 = 0. ; double a11 = 0. ; double a12 = 0. ;
double a13 = 0. ; double a20 = 0. ; double a21 = 0. ;
double a22 = 0. ; double a23 = 0. ; double a24 = 0. ;
bool dege = (fabs(coeff(9)) < 1.e-10) ;
switch (dege) {
case true:
a00 = R1 - dt*(coeff(7)*R1 + coeff(8)) ;
a01 = R2 - dt*R2*coeff(7) ;
a02 = 0 ;
a10 = -dt*(R1*coeff(4) + R1*R1*coeff(5) + coeff(6))/R2 ;
a11 = -dt*(coeff(4) + 2*R1*coeff(5)) ;
a12 = -dt*R2*coeff(5) ;
a13 = 0 ;
a20 = -dt*R1/(R2*R2)*(coeff(1) + R1*coeff(2) + R1*R1*coeff(3)) ;
a21 = -dt/R2*(coeff(1) + 2*R1*coeff(2) + 3*R1*R1*coeff(3)) ;
a22 = -dt*(coeff(2) + 3*R1*coeff(3)) ;
a23 = -dt*R2*coeff(3) ;
a24 = 0 ;
type_dal = ((0.1*(fabs(a20)+fabs(a21)+fabs(a22)+fabs(a23))*nr*nr*nr
< 1.) ? O2DEGE_SMALL : O2DEGE_LARGE ) ;
break ;
case false:
a00 = R1*R1 - dt*(coeff(7)*R1*R1 + coeff(8)*R1 + coeff(9)) ;
a01 = 2*R1*R2 - dt*(2*R1*R2*coeff(7) + R2*coeff(8)) ;
a02 = R2*R2*(1 - dt*coeff(7)) ;
a10 = -dt*R1/R2*(R1*coeff(4) + R1*R1*coeff(5) + coeff(6)) ;
a11 = -dt*(2*R1*coeff(4) + 3*R1*R1*coeff(5) + coeff(6)) ;
a12 = -dt*(R2*coeff(4) + 3*R1*R2*coeff(5)) ;
a13 = -dt*R2*R2*coeff(5) ;
a20 = -dt*(R1*R1)/(R2*R2)*(coeff(1) + R1*coeff(2) + R1*R1*coeff(3)) ;
a21 = -dt*R1/R2*(2*coeff(1) + 3*R1*coeff(2) + 4*R1*R1*coeff(3)) ;
a22 = -dt*(coeff(1) + 3*R1*coeff(2) + 6*R1*R1*coeff(3)) ;
a23 = -dt*(R2*coeff(2) + 4*R1*R2*coeff(3)) ;
a24 = -dt*R2*R2*coeff(3) ;
type_dal = ((0.1*(fabs(a20)+fabs(a21)+fabs(a22)+fabs(a23)+fabs(a24))
*nr*nr*nr < 1.) ? O2NOND_SMALL : O2NOND_LARGE ) ;
break ;
}
if (fabs(a00)<1.e-15) a00 = 0 ;
if (fabs(a01)<1.e-15) a01 = 0 ;
if (fabs(a02)<1.e-15) a02 = 0 ;
if (fabs(a10)<1.e-15) a10 = 0 ;
if (fabs(a11)<1.e-15) a11 = 0 ;
if (fabs(a12)<1.e-15) a12 = 0 ;
if (fabs(a13)<1.e-15) a13 = 0 ;
if (fabs(a20)<1.e-15) a20 = 0 ;
if (fabs(a21)<1.e-15) a21 = 0 ;
if (fabs(a22)<1.e-15) a22 = 0 ;
if (fabs(a23)<1.e-15) a23 = 0 ;
if (fabs(a24)<1.e-15) a24 = 0 ;
Diff_id id(R_JACO02, nr) ;
if (fabs(a00)>1.e-15) {
operateur = a00*id ;
}
else{
operateur.set_etat_qcq() ;
for (int i=0; i<nr; i++)
for (int j=0; j<nr; j++)
operateur.set(i,j) = 0. ;
}
Diff_mx op01(R_JACO02, nr) ; const Matrice& m01 = op01.get_matrice() ;
Diff_mx2 op02(R_JACO02, nr) ; const Matrice& m02 = op02.get_matrice() ;
Diff_dsdx op10(R_JACO02, nr) ; const Matrice& m10 = op10.get_matrice() ;
Diff_xdsdx op11(R_JACO02, nr) ; const Matrice& m11 = op11.get_matrice() ;
Diff_x2dsdx op12(R_JACO02, nr) ; const Matrice& m12 = op12.get_matrice() ;
Diff_x3dsdx op13(R_JACO02, nr) ; const Matrice& m13 = op13.get_matrice() ;
Diff_dsdx2 op20(R_JACO02, nr) ; const Matrice& m20 = op20.get_matrice() ;
Diff_xdsdx2 op21(R_JACO02, nr) ; const Matrice& m21 = op21.get_matrice() ;
Diff_x2dsdx2 op22(R_JACO02, nr) ; const Matrice& m22 = op22.get_matrice() ;
Diff_x3dsdx2 op23(R_JACO02, nr) ; const Matrice& m23 = op23.get_matrice() ;
Diff_x4dsdx2 op24(R_JACO02, nr) ; const Matrice& m24 = op24.get_matrice() ;
for (int i=0; i<nr; i++) {
int jmin = (i>3 ? i-3 : 0) ;
int jmax = (i<nr-9 ? i+10 : nr) ;
for (int j=jmin ; j<jmax; j++)
operateur.set(i,j) += a01*m01(i,j) + a02*m02(i,j)
+ a10*m10(i,j) + a11*m11(i,j) + a12*m12(i,j)
+ a13*m13(i,j) + a20*m20(i,j) + a21*m21(i,j)
+ a22*m22(i,j) + a23*m23(i,j) + a24*m24(i,j) ;
}
}
//--------------------------
//- La routine a appeler ---
//----------------------------
void get_operateur_dal(const Param& par, const int& lzone,
const int& base_r, int& type_dal, Matrice& operateur)
{
// Routines de derivation
static void (*get_operateur_dal[MAX_BASE])(const Param&,
const int&, int&, Matrice&) ;
static int nap = 0 ;
// Premier appel
if (nap==0) {
nap = 1 ;
for (int i=0 ; i<MAX_BASE ; i++)
get_operateur_dal[i] = _get_operateur_dal_pas_prevu ;
// Les routines existantes
get_operateur_dal[R_CHEB >> TRA_R] = _get_operateur_dal_r_cheb ;
get_operateur_dal[R_CHEBP >> TRA_R] = _get_operateur_dal_r_chebp ;
get_operateur_dal[R_CHEBI >> TRA_R] = _get_operateur_dal_r_chebi ;
get_operateur_dal[R_JACO02 >> TRA_R] = _get_operateur_dal_r_jaco02 ;
}
get_operateur_dal[base_r](par, lzone, type_dal, operateur) ;
}
}
|