1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/*
* Copyright (c) 1999-2001 Philippe Grandclement
*
* This file is part of LORENE.
*
* LORENE is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* LORENE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LORENE; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
char helmholtz_minus_mat_C[] = "$$" ;
/*
* $Id: helmholtz_minus_mat.C,v 1.8 2014/10/13 08:53:28 j_novak Exp $
* $Log: helmholtz_minus_mat.C,v $
* Revision 1.8 2014/10/13 08:53:28 j_novak
* Lorene classes and functions now belong to the namespace Lorene.
*
* Revision 1.7 2014/10/06 15:16:08 j_novak
* Modified #include directives to use c++ syntax.
*
* Revision 1.6 2008/07/09 06:51:58 p_grandclement
* some corrections to helmholtz minus in the nucleus
*
* Revision 1.5 2008/07/08 11:45:28 p_grandclement
* Add helmholtz_minus in the nucleus
*
* Revision 1.4 2004/08/24 09:14:44 p_grandclement
* Addition of some new operators, like Poisson in 2d... It now requieres the
* GSL library to work.
*
* Also, the way a variable change is stored by a Param_elliptic is changed and
* no longer uses Change_var but rather 2 Scalars. The codes using that feature
* will requiere some modification. (It should concern only the ones about monopoles)
*
* Revision 1.3 2004/01/15 09:15:37 p_grandclement
* Modification and addition of the Helmholtz operators
*
* Revision 1.2 2003/12/11 15:57:26 p_grandclement
* include stdlib.h encore ...
*
* Revision 1.1 2003/12/11 14:48:49 p_grandclement
* Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
*
*
* $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/helmholtz_minus_mat.C,v 1.8 2014/10/13 08:53:28 j_novak Exp $
*
*/
#include <cstdlib>
#include "matrice.h"
#include "type_parite.h"
#include "proto.h"
#include "diff.h"
//-----------------------------------
// Routine pour les cas non prevus --
//-----------------------------------
namespace Lorene {
Matrice _helmholtz_minus_mat_pas_prevu(int, int, double, double, double) {
cout << "Helmholtz minus : base not implemented..." << endl ;
abort() ;
exit(-1) ;
Matrice res(1, 1) ;
return res;
}
//-------------------------
//-- CAS R_CHEBU -----
//------------------------
Matrice _helmholtz_minus_mat_r_chebu (int n, int lq, double alpha,
double, double masse) {
assert (masse > 0) ;
Matrice res(n-2, n-2) ;
res.set_etat_qcq() ;
double* vect = new double[n] ;
double* vect_bis = new double[n] ;
double* vect_dd = new double[n] ;
for (int i=0 ; i<n-2 ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 2*i+3 ;
vect[i+1] = -4*i-4 ;
vect[i+2] = 2*i+1 ;
for (int j=0 ; j<n ; j++)
vect_bis[j] = vect[j] ;
d2sdx2_1d (n, &vect_bis, R_CHEBU) ; // appel dans le cas unsurr
mult2_xm1_1d_cheb (n, vect_bis, vect_dd) ; // multiplication par (x-1)^2
// Mass term
for (int j=0 ; j<n ; j++)
vect_bis[j] = vect[j] ;
sx2_1d (n, &vect_bis, R_CHEBU) ;
for (int j=0 ; j<n-2 ; j++)
res.set(j,i) = vect_dd[j] - lq*(lq+1)*vect[j]
- masse*masse*vect_bis[j]/alpha/alpha ;
}
delete [] vect ;
delete [] vect_bis ;
delete [] vect_dd ;
return res ;
}
//-------------------------
//-- CAS R_CHEB -----
//------------------------
Matrice _helmholtz_minus_mat_r_cheb (int n, int lq, double alpha, double beta,
double masse) {
assert (masse > 0) ;
double echelle = beta / alpha ;
Matrice dd(n, n) ;
dd.set_etat_qcq() ;
Matrice xd(n, n) ;
xd.set_etat_qcq() ;
Matrice xx(n, n) ;
xx.set_etat_qcq() ;
double* vect = new double[n] ;
for (int i=0 ; i<n ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1 ;
d2sdx2_1d (n, &vect, R_CHEB) ; // appel dans le cas fin
vect[i] -= masse*masse*alpha*alpha ;
for (int j=0 ; j<n ; j++)
dd.set(j, i) = vect[j]*echelle*echelle ;
}
for (int i=0 ; i<n ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1 ;
d2sdx2_1d (n, &vect, R_CHEB) ; // appel dans le cas fin
vect[i] -= masse*masse*alpha*alpha ;
multx_1d (n, &vect, R_CHEB) ;
for (int j=0 ; j<n ; j++)
dd.set(j, i) += 2*echelle*vect[j] ;
}
for (int i=0 ; i<n ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1 ;
d2sdx2_1d (n, &vect, R_CHEB) ; // appel dans le cas fin
vect[i] -= masse*masse*alpha*alpha ;
multx_1d (n, &vect, R_CHEB) ;
multx_1d (n, &vect, R_CHEB) ;
for (int j=0 ; j<n ; j++)
dd.set(j, i) += vect[j] ;
}
for (int i=0 ; i<n ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1 ;
sxdsdx_1d (n, &vect, R_CHEB) ;
for (int j=0 ; j<n ; j++)
xd.set(j, i) = vect[j]*echelle ;
}
for (int i=0 ; i<n ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1 ;
sxdsdx_1d (n, &vect, R_CHEB) ;
multx_1d (n, &vect, R_CHEB) ;
for (int j=0 ; j<n ; j++)
xd.set(j, i) += vect[j] ;
}
for (int i=0 ; i<n ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1 ;
sx2_1d (n, &vect, R_CHEB) ;
for (int j=0 ; j<n ; j++)
xx.set(j, i) = vect[j] ;
}
delete [] vect ;
Matrice res(n, n) ;
res = dd+2*xd - lq*(lq+1)*xx;
return res ;
}
//-------------------------
//-- CAS R_CHEBP -----
//--------------------------
Matrice _helmholtz_minus_mat_r_chebp (int n, int lq, double alpha, double, double masse) {
if (lq==0) {
Diff_dsdx2 d2(R_CHEBP, n) ;
Diff_sxdsdx sxd(R_CHEBP, n) ;
Diff_id xx (R_CHEBP, n) ;
return Matrice(d2 + 2.*sxd -masse*masse*alpha*alpha*xx) ;
}
else {
Matrice res(n-1, n-1) ;
res.set_etat_qcq() ;
double* vect = new double[n] ;
double* vect_sx2 = new double[n] ;
double* vect_sxd = new double[n] ;
double* vect_dd = new double[n] ;
for (int i=0 ; i<n-1 ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = 1. ;
vect[i+1] = 1. ;
for (int j=0 ; j<n ; j++)
vect_dd[j] = vect[j] ;
d2sdx2_1d (n, &vect_dd, R_CHEBP) ; // appel dans le cas chebp
for (int j=0 ; j<n ; j++)
vect_sxd[j] = vect[j] ;
sxdsdx_1d (n, &vect_sxd, R_CHEBP) ; // appel dans le cas chebp
for (int j=0 ; j<n ; j++)
vect_sx2[j] = vect[j] ;
sx2_1d (n, &vect_sx2, R_CHEBP) ; // appel dans le cas chebp
for (int j=0 ; j<n-1 ; j++)
res.set(j,i) = vect_dd[j] +2*vect_sxd[j] - lq*(lq+1)*vect_sx2[j] - masse*masse*alpha*alpha*vect[j] ;
}
delete [] vect ;
delete [] vect_sx2 ;
delete [] vect_sxd ;
delete [] vect_dd ;
return res ;
}
}
//------------------------
//-- CAS R_CHEBI ----
//------------------------
Matrice _helmholtz_minus_mat_r_chebi (int n, int lq, double alpha, double, double masse) {
if (lq==1) {
Diff_dsdx2 d2(R_CHEBI, n) ;
Diff_sxdsdx sxd(R_CHEBI, n) ;
Diff_sx2 sx2(R_CHEBI, n) ;
Diff_id xx(R_CHEBI, n) ;
return Matrice(d2 + 2.*sxd - (lq*(lq+1))*sx2- masse*masse*alpha*alpha*xx) ;
}
else {
Matrice res(n-1, n-1) ;
res.set_etat_qcq() ;
double* vect = new double[n] ;
double* vect_sx2 = new double[n] ;
double* vect_sxd = new double[n] ;
double* vect_dd = new double[n] ;
for (int i=0 ; i<n-1 ; i++) {
for (int j=0 ; j<n ; j++)
vect[j] = 0 ;
vect[i] = (2*i+3) ;
vect[i+1] = (2*i+1) ;
for (int j=0 ; j<n ; j++)
vect_dd[j] = vect[j] ;
d2sdx2_1d (n, &vect_dd, R_CHEBI) ; // appel dans le cas chebi
for (int j=0 ; j<n ; j++)
vect_sxd[j] = vect[j] ;
sxdsdx_1d (n, &vect_sxd, R_CHEBI) ; // appel dans le cas chebi
for (int j=0 ; j<n ; j++)
vect_sx2[j] = vect[j] ;
sx2_1d (n, &vect_sx2, R_CHEBI) ; // appel dans le cas chebi
for (int j=0 ; j<n-1 ; j++)
res.set(j,i) = vect_dd[j] +2*vect_sxd[j] - lq*(lq+1)*vect_sx2[j] - masse*masse*alpha*alpha*vect[j] ;
}
delete [] vect ;
delete [] vect_sx2 ;
delete [] vect_sxd ;
delete [] vect_dd ;
return res ;
}
}
//--------------------------
//- La routine a appeler ---
//----------------------------
Matrice helmholtz_minus_mat(int n, int lq,
double alpha, double beta, double masse,
int base_r)
{
// Routines de derivation
static Matrice (*helmholtz_minus_mat[MAX_BASE])(int, int,
double, double, double);
static int nap = 0 ;
// Premier appel
if (nap==0) {
nap = 1 ;
for (int i=0 ; i<MAX_BASE ; i++) {
helmholtz_minus_mat[i] = _helmholtz_minus_mat_pas_prevu ;
}
// Les routines existantes
helmholtz_minus_mat[R_CHEB >> TRA_R] = _helmholtz_minus_mat_r_cheb ;
helmholtz_minus_mat[R_CHEBU >> TRA_R] = _helmholtz_minus_mat_r_chebu ;
helmholtz_minus_mat[R_CHEBP >> TRA_R] = _helmholtz_minus_mat_r_chebp ;
helmholtz_minus_mat[R_CHEBI >> TRA_R] = _helmholtz_minus_mat_r_chebi ;
}
Matrice res(helmholtz_minus_mat[base_r](n, lq, alpha, beta, masse)) ;
return res ;
}
}
|