File: helmholtz_minus_mat.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (361 lines) | stat: -rw-r--r-- 10,078 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*
 *   Copyright (c) 1999-2001 Philippe Grandclement
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */


char helmholtz_minus_mat_C[] = "$$" ;

/*
 * $Id: helmholtz_minus_mat.C,v 1.8 2014/10/13 08:53:28 j_novak Exp $
 * $Log: helmholtz_minus_mat.C,v $
 * Revision 1.8  2014/10/13 08:53:28  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.7  2014/10/06 15:16:08  j_novak
 * Modified #include directives to use c++ syntax.
 *
 * Revision 1.6  2008/07/09 06:51:58  p_grandclement
 * some corrections to helmholtz minus in the nucleus
 *
 * Revision 1.5  2008/07/08 11:45:28  p_grandclement
 * Add helmholtz_minus in the nucleus
 *
 * Revision 1.4  2004/08/24 09:14:44  p_grandclement
 * Addition of some new operators, like Poisson in 2d... It now requieres the
 * GSL library to work.
 *
 * Also, the way a variable change is stored by a Param_elliptic is changed and
 * no longer uses Change_var but rather 2 Scalars. The codes using that feature
 * will requiere some modification. (It should concern only the ones about monopoles)
 *
 * Revision 1.3  2004/01/15 09:15:37  p_grandclement
 * Modification and addition of the Helmholtz operators
 *
 * Revision 1.2  2003/12/11 15:57:26  p_grandclement
 * include stdlib.h encore ...
 *
 * Revision 1.1  2003/12/11 14:48:49  p_grandclement
 * Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
 *
 * 
 * $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/helmholtz_minus_mat.C,v 1.8 2014/10/13 08:53:28 j_novak Exp $
 *
 */
#include <cstdlib>

#include "matrice.h"
#include "type_parite.h"
#include "proto.h"
#include "diff.h"

                     //-----------------------------------
                     // Routine pour les cas non prevus -- 
                     //-----------------------------------

namespace Lorene {
Matrice _helmholtz_minus_mat_pas_prevu(int, int, double, double, double) {
  cout << "Helmholtz minus : base not implemented..." << endl ;
  abort() ;
  exit(-1) ;
  Matrice res(1, 1) ;
  return res;
}

                    //-------------------------
		    //--   CAS R_CHEBU    -----
		    //------------------------

Matrice _helmholtz_minus_mat_r_chebu (int n, int lq, double alpha, 
				      double, double masse) {

  assert (masse > 0) ;

  Matrice res(n-2, n-2) ;
  res.set_etat_qcq() ;
  
  double* vect = new double[n] ;
  double* vect_bis = new double[n] ;
  double* vect_dd = new double[n] ;
  
  for (int i=0 ; i<n-2 ; i++) {
    
    for (int j=0 ; j<n ; j++)
      vect[j] = 0 ;
    vect[i] = 2*i+3 ;
    vect[i+1] = -4*i-4 ;
    vect[i+2] = 2*i+1 ;
    
    for (int j=0 ; j<n ; j++)
      vect_bis[j] = vect[j] ;
    
    d2sdx2_1d (n, &vect_bis, R_CHEBU) ;  // appel dans le cas unsurr
    mult2_xm1_1d_cheb (n, vect_bis, vect_dd) ; // multiplication par (x-1)^2
   
    // Mass term
    for (int j=0 ; j<n ; j++)
      vect_bis[j] = vect[j] ;
    sx2_1d (n, &vect_bis, R_CHEBU) ;
    
    for (int j=0 ; j<n-2 ; j++)
      res.set(j,i) = vect_dd[j] - lq*(lq+1)*vect[j] 
	- masse*masse*vect_bis[j]/alpha/alpha ;
  }
  
  delete [] vect ;
  delete [] vect_bis ;
  delete [] vect_dd ;

  return res ;
}


                    //-------------------------
		    //--   CAS R_CHEB   -----
		    //------------------------

Matrice _helmholtz_minus_mat_r_cheb (int n, int lq, double alpha, double beta, 
				     double masse) {

  assert (masse > 0) ;
       
  double echelle = beta / alpha ;
    
  Matrice dd(n, n) ;
  dd.set_etat_qcq() ;
  Matrice xd(n, n) ;
  xd.set_etat_qcq() ;  
  Matrice xx(n, n) ;
  xx.set_etat_qcq() ;
  
  double* vect = new double[n] ;
  
  for (int i=0 ; i<n ; i++) {
    for (int j=0 ; j<n ; j++)
      vect[j] = 0 ;
    vect[i] = 1 ;
    d2sdx2_1d (n, &vect, R_CHEB) ;  // appel dans le cas fin
    vect[i] -= masse*masse*alpha*alpha ;
    for (int j=0 ; j<n ; j++)
      dd.set(j, i) = vect[j]*echelle*echelle ;
  }
  
  for (int i=0 ; i<n ; i++) {
    for (int j=0 ; j<n ; j++)
      vect[j] = 0 ;
    vect[i] = 1 ;
    d2sdx2_1d (n, &vect, R_CHEB) ;  // appel dans le cas fin
    vect[i] -= masse*masse*alpha*alpha ;
    multx_1d (n, &vect, R_CHEB) ;
    for (int j=0 ; j<n ; j++)
      dd.set(j, i) += 2*echelle*vect[j] ;
  }
  
  for (int i=0 ; i<n ; i++) {
    for (int j=0 ; j<n ; j++)
      vect[j] = 0 ;
    vect[i] = 1 ;
    d2sdx2_1d (n, &vect, R_CHEB) ;  // appel dans le cas fin
    vect[i] -= masse*masse*alpha*alpha ;
    multx_1d (n, &vect, R_CHEB) ;
    multx_1d (n, &vect, R_CHEB) ;
    for (int j=0 ; j<n ; j++)
      dd.set(j, i) += vect[j] ;
  }
  
  for (int i=0 ; i<n ; i++) {
    for (int j=0 ; j<n ; j++)
      vect[j] = 0 ;
    vect[i] = 1 ;
    sxdsdx_1d (n, &vect, R_CHEB) ;
    for (int j=0 ; j<n ; j++)
      xd.set(j, i) = vect[j]*echelle ;
  }
  
  for (int i=0 ; i<n ; i++) {
    for (int j=0 ; j<n ; j++)
      vect[j] = 0 ;
    vect[i] = 1 ;
    sxdsdx_1d (n, &vect, R_CHEB) ;
    multx_1d (n, &vect, R_CHEB) ;
    for (int j=0 ; j<n ; j++)
      xd.set(j, i) += vect[j] ;
  }
  
    for (int i=0 ; i<n ; i++) {
      for (int j=0 ; j<n ; j++)
	vect[j] = 0 ;
      vect[i] = 1 ;
      sx2_1d (n, &vect, R_CHEB) ;
      for (int j=0 ; j<n ; j++)
	xx.set(j, i) = vect[j] ;
    }

  delete [] vect ;
  
  Matrice res(n, n) ;
  res = dd+2*xd - lq*(lq+1)*xx; 
  
  return res ;
}


		   //-------------------------
		   //--   CAS R_CHEBP    -----
		   //--------------------------
		    

Matrice _helmholtz_minus_mat_r_chebp (int n, int lq, double alpha, double, double masse) {
   
    if (lq==0) {
   	Diff_dsdx2 d2(R_CHEBP, n) ;
    	Diff_sxdsdx sxd(R_CHEBP, n) ;
    	Diff_id xx (R_CHEBP, n) ;
    
    	return Matrice(d2 + 2.*sxd -masse*masse*alpha*alpha*xx) ;
    }
	else {
	      Matrice res(n-1, n-1) ;
  	      res.set_etat_qcq() ;
  
              double* vect = new double[n] ;
 
              double* vect_sx2 = new double[n] ;
	      double* vect_sxd = new double[n] ;
              double* vect_dd = new double[n] ;
  
 	     for (int i=0 ; i<n-1 ; i++) {
    		for (int j=0 ; j<n ; j++)
      			vect[j] = 0 ;
    		vect[i] = 1. ;
    		vect[i+1] = 1. ;
    
		
    	    for (int j=0 ; j<n ; j++)
                 vect_dd[j] = vect[j] ;
            d2sdx2_1d (n, &vect_dd, R_CHEBP) ;  // appel dans le cas chebp
	    for (int j=0 ; j<n ; j++)
                 vect_sxd[j] = vect[j] ;
            sxdsdx_1d (n, &vect_sxd, R_CHEBP) ;  // appel dans le cas chebp
	    for (int j=0 ; j<n ; j++)
                 vect_sx2[j] = vect[j] ;
            sx2_1d (n, &vect_sx2, R_CHEBP) ;  // appel dans le cas chebp
		
   	 for (int j=0 ; j<n-1 ; j++)
		res.set(j,i) = vect_dd[j] +2*vect_sxd[j] - lq*(lq+1)*vect_sx2[j] - masse*masse*alpha*alpha*vect[j] ;
 	 }
  		delete [] vect ;
  		delete [] vect_sx2 ;
  		delete [] vect_sxd ;
		delete [] vect_dd ;

	  return res ;
	}
}



		   //------------------------
		   //--   CAS R_CHEBI    ----
		   //------------------------
		    

Matrice _helmholtz_minus_mat_r_chebi (int n, int lq, double alpha, double, double masse) {
   
  if (lq==1) {
    Diff_dsdx2 d2(R_CHEBI, n) ;
    Diff_sxdsdx sxd(R_CHEBI, n) ;
    Diff_sx2 sx2(R_CHEBI, n) ;
    Diff_id xx(R_CHEBI, n) ;

    return Matrice(d2 + 2.*sxd - (lq*(lq+1))*sx2- masse*masse*alpha*alpha*xx) ;
   }
	else {
	      Matrice res(n-1, n-1) ;
  	      res.set_etat_qcq() ;
  
              double* vect = new double[n] ;
 
              double* vect_sx2 = new double[n] ;
	      double* vect_sxd = new double[n] ;
              double* vect_dd = new double[n] ;
  
 	     for (int i=0 ; i<n-1 ; i++) {
    		for (int j=0 ; j<n ; j++)
      			vect[j] = 0 ;
    		vect[i] = (2*i+3) ;
    		vect[i+1] = (2*i+1) ;
    
		
    	    for (int j=0 ; j<n ; j++)
                 vect_dd[j] = vect[j] ;
            d2sdx2_1d (n, &vect_dd, R_CHEBI) ;  // appel dans le cas chebi
	    for (int j=0 ; j<n ; j++)
                 vect_sxd[j] = vect[j] ;
            sxdsdx_1d (n, &vect_sxd, R_CHEBI) ;  // appel dans le cas chebi
	    for (int j=0 ; j<n ; j++)
                 vect_sx2[j] = vect[j] ;
            sx2_1d (n, &vect_sx2, R_CHEBI) ;  // appel dans le cas chebi
		
   	 for (int j=0 ; j<n-1 ; j++)
		res.set(j,i) = vect_dd[j] +2*vect_sxd[j] - lq*(lq+1)*vect_sx2[j] - masse*masse*alpha*alpha*vect[j] ;
 	 }
  		delete [] vect ;
  		delete [] vect_sx2 ;
  		delete [] vect_sxd ;
		delete [] vect_dd ;

	  return res ;
	}
}


	
                //--------------------------
		//- La routine a appeler  ---
	        //----------------------------

Matrice helmholtz_minus_mat(int n, int lq, 
			    double alpha, double beta, double masse, 
			    int base_r)
{
  
  // Routines de derivation
  static Matrice (*helmholtz_minus_mat[MAX_BASE])(int, int, 
						  double, double, double);
  static int nap = 0 ;
  
  // Premier appel
  if (nap==0) {
    nap = 1 ;
    for (int i=0 ; i<MAX_BASE ; i++) {
      helmholtz_minus_mat[i] = _helmholtz_minus_mat_pas_prevu ;
    }
    // Les routines existantes
    helmholtz_minus_mat[R_CHEB >> TRA_R] = _helmholtz_minus_mat_r_cheb ;
    helmholtz_minus_mat[R_CHEBU >> TRA_R] = _helmholtz_minus_mat_r_chebu ;	
    helmholtz_minus_mat[R_CHEBP >> TRA_R] = _helmholtz_minus_mat_r_chebp ;
    helmholtz_minus_mat[R_CHEBI >> TRA_R] = _helmholtz_minus_mat_r_chebi ;
  }
  
  Matrice res(helmholtz_minus_mat[base_r](n, lq, alpha, beta, masse)) ;
  return res ;
}

}