File: pois_vect_r0.C

package info (click to toggle)
lorene 0.0.0~cvs20161116%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 26,444 kB
  • ctags: 13,953
  • sloc: cpp: 212,946; fortran: 21,645; makefile: 1,750; sh: 4
file content (317 lines) | stat: -rw-r--r-- 9,999 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
/*
 *  Solution of the l=0 part of the vector Poisson equation (only r-component)
 *
 */

/*
 *   Copyright (c) 2007  Jerome Novak
 *
 *   This file is part of LORENE.
 *
 *   LORENE is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License version 2
 *   as published by the Free Software Foundation.
 *
 *   LORENE is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with LORENE; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

char pois_vect_r0_C[] = "$Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/pois_vect_r0.C,v 1.2 2014/10/13 08:53:29 j_novak Exp $" ;

/*
 * $Id: pois_vect_r0.C,v 1.2 2014/10/13 08:53:29 j_novak Exp $
 * $Log: pois_vect_r0.C,v $
 * Revision 1.2  2014/10/13 08:53:29  j_novak
 * Lorene classes and functions now belong to the namespace Lorene.
 *
 * Revision 1.1  2007/01/23 17:08:46  j_novak
 * New function pois_vect_r0.C to solve the l=0 part of the vector Poisson
 * equation, which involves only the r-component.
 *
 *
 * $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/pois_vect_r0.C,v 1.2 2014/10/13 08:53:29 j_novak Exp $
 *
 */

// Lorene headers
#include "metric.h"
#include "proto.h"
#include "diff.h"

/*
 * This function solves for the l=0 component of
 * 
 *         d2 f   2 df   2f
 *         ---- + - -- - --  = source 
 *          dr2   r dr   r2
 * 
 * and returns the soluton f. 
 * The input Scalar must have dzpuis = 4.
 */
namespace Lorene {
Scalar pois_vect_r0(const Scalar& source) {

    const Map& map0 = source.get_mp() ;
    const Map_af* map1 = dynamic_cast<const Map_af*>(&map0) ;
    assert(map1 != 0x0) ;
    const Map_af& map = *map1 ;

    const Mg3d& mgrid = *map.get_mg() ;
    int nz = mgrid.get_nzone() ;

    Scalar resu(map) ;
    if (source.get_etat() == ETATZERO) {
	resu = 0 ;
	return resu ;
    }

    resu.annule_hard() ;
    resu.std_spectral_base_odd() ;
    resu.set_spectral_va().ylm() ;	
    Mtbl_cf& sol_coef = (*resu.set_spectral_va().c_cf) ;
    const Base_val& base = source.get_spectral_base() ;
    assert(resu.get_spectral_base() == base) ;
    assert(source.check_dzpuis(4)) ;

    Mtbl_cf sol_part(mgrid, base) ; sol_part.annule_hard() ;
    Mtbl_cf sol_hom1(mgrid, base) ; sol_hom1.annule_hard() ;
    Mtbl_cf sol_hom2(mgrid, base) ; sol_hom2.annule_hard() ;

    { int lz = 0 ;
      int nr = mgrid.get_nr(lz) ;
      double alpha2 = map.get_alpha()[lz]*map.get_alpha()[lz] ;
      assert(mgrid.get_type_r(lz) == RARE) ;
      int base_r = R_CHEBI ;
      Matrice ope(nr,nr) ;
      ope.annule_hard() ;
      Diff_dsdx2 dx2(base_r, nr) ; const Matrice& mdx2 = dx2.get_matrice() ;
      Diff_sxdsdx sdx(base_r, nr) ; const Matrice& msdx = sdx.get_matrice() ;
      Diff_sx2 sx2(base_r, nr) ; const Matrice& ms2 = sx2.get_matrice() ;
      
      for (int lin=0; lin<nr-1; lin++) 
	  for (int col=0; col<nr; col++)
	      ope.set(lin,col) = (mdx2(lin,col) + 2*msdx(lin,col) - 2*ms2(lin,col))/alpha2 ;
      
      ope.set(nr-1, 0) = 1 ; //for the true homogeneous solution
      for (int i=1; i<nr; i++)
	  ope.set(nr-1, i) = 0 ;

      Tbl rhs(nr) ;
      rhs.annule_hard() ;
      for (int i=0; i<nr-1; i++)
	  rhs.set(i) = (*source.get_spectral_va().c_cf)(lz, 0, 0, i) ;
      rhs.set(nr-1) = 0 ;
      ope.set_lu() ;
      Tbl sol = ope.inverse(rhs) ;
		       
      for (int i=0; i<nr; i++)
	  sol_part.set(lz, 0, 0, i) = sol(i) ;
      
      rhs.annule_hard() ;
      rhs.set(nr-1) = 1 ;
      sol = ope.inverse(rhs) ;
      for (int i=0; i<nr; i++)
	  sol_hom1.set(lz, 0, 0, i) = sol(i) ;
      
    }

    for (int lz=1; lz<nz-1; lz++) {
	int nr = mgrid.get_nr(lz) ;
	double alpha = map.get_alpha()[lz] ;
	double beta = map.get_beta()[lz] ;
	double ech = beta / alpha ;
	assert(mgrid.get_type_r(lz) == FIN) ;
	int base_r = R_CHEB ;
			
	Matrice ope(nr,nr) ;
	ope.annule_hard() ;
	
	Diff_dsdx dx(base_r, nr) ; const Matrice& mdx = dx.get_matrice() ;
	Diff_dsdx2 dx2(base_r, nr) ; const Matrice& mdx2 = dx2.get_matrice() ;
	Diff_id id(base_r, nr) ; const Matrice& mid = id.get_matrice() ;
	Diff_xdsdx xdx(base_r, nr) ; const Matrice& mxdx = xdx.get_matrice() ;
	Diff_xdsdx2 xdx2(base_r, nr) ; const Matrice& mxdx2 = xdx2.get_matrice() ;
	Diff_x2dsdx2 x2dx2(base_r, nr) ; const Matrice& mx2dx2 = x2dx2.get_matrice() ;
	
	for (int lin=0; lin<nr-2; lin++) 
	    for (int col=0; col<nr; col++) 
		ope.set(lin, col) = mx2dx2(lin, col) + 2*ech*mxdx2(lin, col) + ech*ech*mdx2(lin, col) 
		    + 2*(mxdx(lin, col) + ech*mdx(lin, col)) - 2*mid(lin, col) ;
	
	ope.set(nr-2, 0) = 0 ;
	ope.set(nr-2, 1) = 1 ;
	for (int col=2; col<nr; col++) {
	    ope.set(nr-2, col) = 0 ;
	}
	ope.set(nr-1, 0) = 1 ;
	for (int col=1; col<nr; col++)
	    ope.set(nr-1, col) = 0 ;
	
	Tbl src(nr) ;
	src.set_etat_qcq() ;
	for (int i=0; i<nr; i++) 
	    src.set(i) = (*source.get_spectral_va().c_cf)(lz, 0, 0, i) ;
	Tbl xsrc = src ; multx_1d(nr, &xsrc.t, base_r) ;
	Tbl x2src = src ; multx2_1d(nr, &x2src.t, base_r) ;
	Tbl rhs(nr) ;
	rhs.set_etat_qcq() ;
	for (int i=0; i<nr-2; i++) 
	    rhs.set(i) = beta*beta*src(i) + 2*beta*alpha*xsrc(i) + alpha*alpha*x2src(i) ;
	rhs.set(nr-2) = 0 ;
	rhs.set(nr-1) = 0 ;
	ope.set_lu() ;
	Tbl sol = ope.inverse(rhs) ;
	
	for (int i=0; i<nr; i++)
	    sol_part.set(lz, 0, 0, i) = sol(i) ;
	
	rhs.annule_hard() ;
	rhs.set(nr-2) = 1 ;
	sol = ope.inverse(rhs) ;
	for (int i=0; i<nr; i++)
	    sol_hom1.set(lz, 0, 0, i) = sol(i) ;
	
	rhs.set(nr-2) = 0 ;
	rhs.set(nr-1) = 1 ;
	sol = ope.inverse(rhs) ;
	for (int i=0; i<nr; i++)
	    sol_hom2.set(lz, 0, 0, i) = sol(i) ;
	
    }

    { int lz = nz-1 ;
      int nr = mgrid.get_nr(lz) ;
      double alpha2 = map.get_alpha()[lz]*map.get_alpha()[lz] ;
      assert(mgrid.get_type_r(lz) == UNSURR) ;
      int base_r = R_CHEBU ;
			
      Matrice ope(nr,nr) ;
      ope.annule_hard() ;
      Diff_dsdx2 dx2(base_r, nr) ; const Matrice& mdx2 = dx2.get_matrice() ;
      Diff_sx2 sx2(base_r, nr) ; const Matrice& ms2 = sx2.get_matrice() ;
      
      for (int lin=0; lin<nr-3; lin++) 
	  for (int col=0; col<nr; col++) 
	      ope.set(lin, col) = (mdx2(lin, col) - 2*ms2(lin, col))/alpha2 ;
      
      for (int i=0; i<nr; i++) {
	  ope.set(nr-3, i) = i*i ; //for the finite part (derivative = 0 at infty)
      }
      
      for (int i=0; i<nr; i++) {
	  ope.set(nr-2, i) = 1 ; //for the limit at inifinity
      }
      
      ope.set(nr-1, 0) = 1 ; //for the true homogeneous solution
      for (int i=1; i<nr; i++)
	  ope.set(nr-1, i) = 0 ;
      
      Tbl rhs(nr) ;
      rhs.annule_hard() ;
      for (int i=0; i<nr-3; i++)
	  rhs.set(i) = (*source.get_spectral_va().c_cf)(lz, 0, 0, i) ;
      rhs.set(nr-3) = 0 ;
      rhs.set(nr-2) = 0 ;
      rhs.set(nr-1) = 0 ;
      ope.set_lu() ;
      Tbl sol = ope.inverse(rhs) ;
      for (int i=0; i<nr; i++)
	  sol_part.set(lz, 0, 0, i) = sol(i) ;
      
      rhs.annule_hard() ;
      rhs.set(nr-1) = 1 ;
      sol = ope.inverse(rhs) ;
      for (int i=0; i<nr; i++)
	  sol_hom2.set(lz, 0, 0, i) = sol(i) ;
      
    }

    Mtbl_cf dpart = sol_part ; dpart.dsdx() ;
    Mtbl_cf dhom1 = sol_hom1 ; dhom1.dsdx() ;
    Mtbl_cf dhom2 = sol_hom2 ; dhom2.dsdx() ;
    
    Matrice systeme(2*(nz-1), 2*(nz-1)) ;
    systeme.annule_hard() ;
    Tbl rhs(2*(nz-1)) ;
    rhs.annule_hard() ;

    //Nucleus
    int lin = 0 ;
    int col = 0 ;
    double alpha = map.get_alpha()[0] ;
    systeme.set(lin,col) = sol_hom1.val_out_bound_jk(0, 0, 0) ;
    rhs.set(lin) -= sol_part.val_out_bound_jk(0, 0, 0) ;
    lin++ ;
    systeme.set(lin,col) = dhom1.val_out_bound_jk(0, 0, 0) / alpha ;
    rhs.set(lin) -= dpart.val_out_bound_jk(0, 0, 0) / alpha ;
    col++ ;
    
    //Shells
    for (int lz=1; lz<nz-1; lz++) {
	alpha = map.get_alpha()[lz] ;
	lin-- ;
	systeme.set(lin,col) -= sol_hom1.val_in_bound_jk(lz, 0, 0) ;
	systeme.set(lin,col+1) -= sol_hom2.val_in_bound_jk(lz, 0, 0) ;
	rhs.set(lin) += sol_part.val_in_bound_jk(lz, 0, 0) ;
	
	lin++ ;
	systeme.set(lin,col) -= dhom1.val_in_bound_jk(lz, 0, 0) / alpha ;
	systeme.set(lin,col+1) -= dhom2.val_in_bound_jk(lz, 0, 0) / alpha ;
	rhs.set(lin) += dpart.val_in_bound_jk(lz, 0, 0) / alpha;
	
	lin++ ;
	systeme.set(lin, col) += sol_hom1.val_out_bound_jk(lz, 0, 0) ;
	systeme.set(lin, col+1) += sol_hom2.val_out_bound_jk(lz, 0, 0) ;
	rhs.set(lin) -= sol_part.val_out_bound_jk(lz, 0, 0) ;
	
	lin++ ;
	systeme.set(lin, col) += dhom1.val_out_bound_jk(lz, 0, 0) / alpha ;
	systeme.set(lin, col+1) += dhom2.val_out_bound_jk(lz, 0, 0) / alpha ;
	rhs.set(lin) -= dpart.val_out_bound_jk(lz, 0, 0) / alpha ;
	col += 2 ;
    }
    
    //CED
    alpha = map.get_alpha()[nz-1] ;
    lin-- ;
    systeme.set(lin,col) -= sol_hom2.val_in_bound_jk(nz-1, 0, 0) ;
    rhs.set(lin) += sol_part.val_in_bound_jk(nz-1, 0, 0) ;
    
    lin++ ;
    systeme.set(lin,col) -= (-4*alpha)*dhom2.val_in_bound_jk(nz-1, 0, 0) ;
    rhs.set(lin) += (-4*alpha)*dpart.val_in_bound_jk(nz-1, 0, 0) ;
    
    systeme.set_lu() ;
    Tbl coef = systeme.inverse(rhs) ;
    int indice = 0 ;
    
    for (int i=0; i<mgrid.get_nr(0); i++)
	sol_coef.set(0, 0, 0, i) = sol_part(0, 0, 0, i) 
	    + coef(indice)*sol_hom1(0, 0, 0, i) ;
    indice++ ;
    for (int lz=1; lz<nz-1; lz++) {
	for (int i=0; i<mgrid.get_nr(lz); i++)
	    sol_coef.set(lz, 0, 0, i) = sol_part(lz, 0, 0, i)
		+coef(indice)*sol_hom1(lz, 0, 0, i) 
		+coef(indice+1)*sol_hom2(lz, 0, 0, i) ;
	indice += 2 ;
    }
    for (int i=0; i<mgrid.get_nr(nz-1); i++)
	sol_coef.set(nz-1, 0, 0, i) = sol_part(nz-1, 0, 0, i)
	    +coef(indice)*sol_hom2(nz-1, 0, 0, i) ;

    delete resu.set_spectral_va().c ;
    resu.set_spectral_va().c = 0x0 ;
    resu.set_dzpuis(0) ;
    resu.set_spectral_va().ylm_i() ;
    
    return resu ; 
}
}